Matches in SemOpenAlex for { <https://semopenalex.org/work/W3155012757> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W3155012757 endingPage "982" @default.
- W3155012757 startingPage "982" @default.
- W3155012757 abstract "A frequent cause of lower back pain presenting with leg pain is a herniated lumbar intervertebral disc. A herniation or a herniated lumbar disc is a change of position of disc material (nucleus pulpous or annulus fibrosis). Usually, the lower back pain goes away within days or weeks. Regular treatment techniques for lower back pain include medication, exercises, relaxation methods and surgery. Back pain and back problems regularly occur in the lumbar region. The spinal canal is made up of vertebrae; each one protects the spinal nerves. Intervertebral discs and facet joints connect the vertebrae above and below. Groups of muscles and ligaments hold the vertebrae and the discs together. Muscles support the spine and the body weight, and they allow us to move. Pressure can result in excessive wear and tear of the other structures. For example, a common problem in the lower back is disc herniation. In this case, pressure on an intervertebral disc makes its center, the nucleus pulposus, protrude backwards and push against the spinal nerves, leading to lower back pain. Detection and classification are the two most important tasks in computer aided diagnosing systems. Detection of a herniated lumbar disc from magnetic resonance imaging (MRI) is a very difficult task for radiologist. The extraction of herniated discs has been achieved by different approaches such as active contours, region growing, watershed techniques, thresholding and deep learning. In this study, to detect intervertebral disc from axial MRIs we develop a method using generative adversarial networks (GANs), especially the CycleGAN model, to automatically generate and detect intervertebral disc and to classify the type of the herniated lumbar disc such as foraminal or median. We propose to explore the importance of axial view MRI to determine the herniation type. Accurately, GANs and other generative networks have created several ways to tackle different problems well known and challenging of medical image analysis, such as segmentation, reconstruction, data simulation, medical image de-noising, and classification. Moreover, their efficiency to synthesize images and data at unprecedented levels of realism also gives hope that the chronic scarcity of labeled data in the medical field can be resolved with the help of these generative models. In our case, having a database that contains several images is a very difficult task. In this paper, we put forward a new approach based on GANs, in order to solve the problem of lumbar intervertebral disc images reduction. This method is based especially on CycleGAN. Consequently, the essential objective of our work is to generate and automatically classify the herniation type as foraminal or median using GANs. Our computer aided diagnosis (CAD) system achieved a 97.2% accuracy on our dataset. This result represents a very high-performance results by providing the state of the art and our work utilizing the GANs technique. Our CAD is very effective and efficient for classifying herniations of lumbar intervertebral discs. Therefore, the contribution of this study appears in: firstly, the use of the CycleGAN model based on convolutional layers to detect and classify the herniation type (median or foraminal) in lumbar intervertebral discs, secondly, the use of axial view MRI in order to classify the type of the herniated intervertebral disc. The main objective of this paper is to help radiologists automatically recognize and classify herniated lumbar discs." @default.
- W3155012757 created "2021-04-26" @default.
- W3155012757 creator A5007949063 @default.
- W3155012757 creator A5061200301 @default.
- W3155012757 creator A5062576682 @default.
- W3155012757 creator A5066764956 @default.
- W3155012757 creator A5070370752 @default.
- W3155012757 date "2021-04-20" @default.
- W3155012757 modified "2023-09-26" @default.
- W3155012757 title "Herniated Lumbar Disc Generation and Classification Using Cycle Generative Adversarial Networks on Axial View MRI" @default.
- W3155012757 cites W1924732381 @default.
- W3155012757 cites W1965553423 @default.
- W3155012757 cites W1967799757 @default.
- W3155012757 cites W1988007434 @default.
- W3155012757 cites W2018123641 @default.
- W3155012757 cites W2164410279 @default.
- W3155012757 cites W2617128058 @default.
- W3155012757 cites W2748739903 @default.
- W3155012757 cites W2754289204 @default.
- W3155012757 cites W2765811365 @default.
- W3155012757 cites W2774700626 @default.
- W3155012757 cites W2778924750 @default.
- W3155012757 cites W2799299820 @default.
- W3155012757 cites W2883105305 @default.
- W3155012757 cites W2884392922 @default.
- W3155012757 cites W2889871190 @default.
- W3155012757 cites W2902551813 @default.
- W3155012757 cites W2911091074 @default.
- W3155012757 cites W2921015455 @default.
- W3155012757 cites W2963971125 @default.
- W3155012757 cites W2990793844 @default.
- W3155012757 cites W3047625747 @default.
- W3155012757 cites W3118707936 @default.
- W3155012757 cites W3130822715 @default.
- W3155012757 cites W3131852626 @default.
- W3155012757 doi "https://doi.org/10.3390/electronics10080982" @default.
- W3155012757 hasPublicationYear "2021" @default.
- W3155012757 type Work @default.
- W3155012757 sameAs 3155012757 @default.
- W3155012757 citedByCount "1" @default.
- W3155012757 countsByYear W31550127572022 @default.
- W3155012757 crossrefType "journal-article" @default.
- W3155012757 hasAuthorship W3155012757A5007949063 @default.
- W3155012757 hasAuthorship W3155012757A5061200301 @default.
- W3155012757 hasAuthorship W3155012757A5062576682 @default.
- W3155012757 hasAuthorship W3155012757A5066764956 @default.
- W3155012757 hasAuthorship W3155012757A5070370752 @default.
- W3155012757 hasBestOaLocation W31550127571 @default.
- W3155012757 hasConcept C105702510 @default.
- W3155012757 hasConcept C118552586 @default.
- W3155012757 hasConcept C126838900 @default.
- W3155012757 hasConcept C142724271 @default.
- W3155012757 hasConcept C143409427 @default.
- W3155012757 hasConcept C204787440 @default.
- W3155012757 hasConcept C2776501849 @default.
- W3155012757 hasConcept C2777755357 @default.
- W3155012757 hasConcept C2779326565 @default.
- W3155012757 hasConcept C2779835254 @default.
- W3155012757 hasConcept C2780775167 @default.
- W3155012757 hasConcept C2780907711 @default.
- W3155012757 hasConcept C44575665 @default.
- W3155012757 hasConcept C71924100 @default.
- W3155012757 hasConceptScore W3155012757C105702510 @default.
- W3155012757 hasConceptScore W3155012757C118552586 @default.
- W3155012757 hasConceptScore W3155012757C126838900 @default.
- W3155012757 hasConceptScore W3155012757C142724271 @default.
- W3155012757 hasConceptScore W3155012757C143409427 @default.
- W3155012757 hasConceptScore W3155012757C204787440 @default.
- W3155012757 hasConceptScore W3155012757C2776501849 @default.
- W3155012757 hasConceptScore W3155012757C2777755357 @default.
- W3155012757 hasConceptScore W3155012757C2779326565 @default.
- W3155012757 hasConceptScore W3155012757C2779835254 @default.
- W3155012757 hasConceptScore W3155012757C2780775167 @default.
- W3155012757 hasConceptScore W3155012757C2780907711 @default.
- W3155012757 hasConceptScore W3155012757C44575665 @default.
- W3155012757 hasConceptScore W3155012757C71924100 @default.
- W3155012757 hasIssue "8" @default.
- W3155012757 hasLocation W31550127571 @default.
- W3155012757 hasLocation W31550127572 @default.
- W3155012757 hasLocation W31550127573 @default.
- W3155012757 hasOpenAccess W3155012757 @default.
- W3155012757 hasPrimaryLocation W31550127571 @default.
- W3155012757 hasRelatedWork W2035817373 @default.
- W3155012757 hasRelatedWork W2045075254 @default.
- W3155012757 hasRelatedWork W2076104953 @default.
- W3155012757 hasRelatedWork W2170132220 @default.
- W3155012757 hasRelatedWork W2229843513 @default.
- W3155012757 hasRelatedWork W2313418188 @default.
- W3155012757 hasRelatedWork W2322245104 @default.
- W3155012757 hasRelatedWork W2804478568 @default.
- W3155012757 hasRelatedWork W3030929059 @default.
- W3155012757 hasRelatedWork W3032820809 @default.
- W3155012757 hasVolume "10" @default.
- W3155012757 isParatext "false" @default.
- W3155012757 isRetracted "false" @default.
- W3155012757 magId "3155012757" @default.
- W3155012757 workType "article" @default.