Matches in SemOpenAlex for { <https://semopenalex.org/work/W3155146201> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W3155146201 endingPage "107989" @default.
- W3155146201 startingPage "107989" @default.
- W3155146201 abstract "• I propose the first morphological implementation of the Hausdorff Distance (HD). Although Serra has proved that it can be computed using mathematics, he did not provide nor propose any tangible implementation. I am the first to propose a morphological implementation (there could be many) and I compare it using different paradigms (CPU and GPU) to the state-of-the-art. • The proposed algorithm is much faster than the state-of-the-art (work of Taha and Hanbury published in TPAMI) when we consider both the CPU and the GPU for the worst case and for tasks such as image registration. • I provide the most extensive evaluation of performance of the Hausdorff distance in the literature (considering different paradigms and programming languages). • When we consider the CPU, my proposal is up to 8 times faster than the Taha-Hanbury implementation for image registration and 22337 times faster for the worst case. In the case of the GPU, it is even faster than that. Hausdorff distance (HD) is a popular similarity metric used in the comparison of images or 3D volumes. Although popular, its main weakness is computing power consumption, being one of the slowest set distances. In this work, a novel, parallel and locality-oriented Hausdorff distance implementation is proposed. Novel as it is the first time in the literature that an actual algorithmic implementation using morphological dilations is proposed and thoroughly evaluated. Parallel, as it is more robust in terms of parallelization than the state-of-the-art algorithm and local as it has an intrinsic sensitivity to voxels that are closer in space. This proposal can be faster than the state-of-the-art in several practical cases such as in medical imaging registrations (up to 8 times faster on average in one of the CPU experiments) and is faster in the worst-case (up to 22337 times faster in one of the CPU experiments). Worst-case scenarios and high resolution volumes also favor the proposed approach. Throughout the work, several sequential and parallel CPU and GPU implementations are evaluated and compared." @default.
- W3155146201 created "2021-04-26" @default.
- W3155146201 creator A5041749289 @default.
- W3155146201 date "2021-09-01" @default.
- W3155146201 modified "2023-10-18" @default.
- W3155146201 title "An efficient and locality-oriented Hausdorff distance algorithm: Proposal and analysis of paradigms and implementations" @default.
- W3155146201 cites W1783024479 @default.
- W3155146201 cites W1968842061 @default.
- W3155146201 cites W1970768661 @default.
- W3155146201 cites W1977957682 @default.
- W3155146201 cites W2014440151 @default.
- W3155146201 cites W2028344184 @default.
- W3155146201 cites W2056223492 @default.
- W3155146201 cites W2100666139 @default.
- W3155146201 cites W2117947261 @default.
- W3155146201 cites W2135914471 @default.
- W3155146201 cites W2160754664 @default.
- W3155146201 cites W2209868426 @default.
- W3155146201 cites W2305947681 @default.
- W3155146201 cites W2325015832 @default.
- W3155146201 cites W2565938754 @default.
- W3155146201 cites W2589664828 @default.
- W3155146201 cites W2615718973 @default.
- W3155146201 cites W2793284597 @default.
- W3155146201 cites W3032920083 @default.
- W3155146201 cites W4226459256 @default.
- W3155146201 doi "https://doi.org/10.1016/j.patcog.2021.107989" @default.
- W3155146201 hasPublicationYear "2021" @default.
- W3155146201 type Work @default.
- W3155146201 sameAs 3155146201 @default.
- W3155146201 citedByCount "4" @default.
- W3155146201 countsByYear W31551462012021 @default.
- W3155146201 countsByYear W31551462012022 @default.
- W3155146201 countsByYear W31551462012023 @default.
- W3155146201 crossrefType "journal-article" @default.
- W3155146201 hasAuthorship W3155146201A5041749289 @default.
- W3155146201 hasConcept C11413529 @default.
- W3155146201 hasConcept C138885662 @default.
- W3155146201 hasConcept C141898687 @default.
- W3155146201 hasConcept C154945302 @default.
- W3155146201 hasConcept C199360897 @default.
- W3155146201 hasConcept C26713055 @default.
- W3155146201 hasConcept C2779808786 @default.
- W3155146201 hasConcept C41008148 @default.
- W3155146201 hasConcept C41895202 @default.
- W3155146201 hasConcept C80444323 @default.
- W3155146201 hasConceptScore W3155146201C11413529 @default.
- W3155146201 hasConceptScore W3155146201C138885662 @default.
- W3155146201 hasConceptScore W3155146201C141898687 @default.
- W3155146201 hasConceptScore W3155146201C154945302 @default.
- W3155146201 hasConceptScore W3155146201C199360897 @default.
- W3155146201 hasConceptScore W3155146201C26713055 @default.
- W3155146201 hasConceptScore W3155146201C2779808786 @default.
- W3155146201 hasConceptScore W3155146201C41008148 @default.
- W3155146201 hasConceptScore W3155146201C41895202 @default.
- W3155146201 hasConceptScore W3155146201C80444323 @default.
- W3155146201 hasLocation W31551462011 @default.
- W3155146201 hasOpenAccess W3155146201 @default.
- W3155146201 hasPrimaryLocation W31551462011 @default.
- W3155146201 hasRelatedWork W1485630101 @default.
- W3155146201 hasRelatedWork W1964111820 @default.
- W3155146201 hasRelatedWork W2083338789 @default.
- W3155146201 hasRelatedWork W2112690207 @default.
- W3155146201 hasRelatedWork W2363648756 @default.
- W3155146201 hasRelatedWork W2381880241 @default.
- W3155146201 hasRelatedWork W2589307556 @default.
- W3155146201 hasRelatedWork W2886384632 @default.
- W3155146201 hasRelatedWork W4249758101 @default.
- W3155146201 hasRelatedWork W1501086624 @default.
- W3155146201 hasVolume "117" @default.
- W3155146201 isParatext "false" @default.
- W3155146201 isRetracted "false" @default.
- W3155146201 magId "3155146201" @default.
- W3155146201 workType "article" @default.