Matches in SemOpenAlex for { <https://semopenalex.org/work/W3155223889> ?p ?o ?g. }
- W3155223889 endingPage "159919" @default.
- W3155223889 startingPage "159919" @default.
- W3155223889 abstract "One of the main barriers to the commercialization of polymer electrolyte membrane fuel cell (PEMFC) systems is the cost, which is largely due to the need of platinum (Pt)-containing catalysts. In order to overcome this issue, several methods have been developed. One of them is the supported electrocatalysts prepared by combining a low cost second metal with Pt. Motivated by this idea, in this study, nano-sized Pt-M (M = Ni, Fe, Cu) binary electrocatalysts were synthesized on the graphene nanoplatelets (GNPs) via supercritical fluid deposition (SFD) technique in order to decrease the cost and increase the activity of the catalysts. Because, the unusual properties of supercritical fluids (SFs), including tunable solvent strength, high diffusivity, low viscosity, and low surface tension, offer significant advantages over conventional techniques for materials processing. In this regard, compared to the other SFs, carbon dioxide (CO2) has received much more attention due to its easy accessibility to the supercritical state, relative benignity to the environment, chemical inertness, low toxicity, low cost. The supercritical carbon dioxide (scCO2) deposition technique involves firstly the dissolution of the metal precursor onto the support material, and then conversion of the metal precursor to its metallic form by means of thermal or chemical conversion. Synthesis of supported bimetallic nanoparticles (NPs) via scCO2 can be sequentially or simultaneously. Herein, we investigated the development of Pt-M (PtCu, PtNi, PtFe) alloy NPs on GNPs by scCO2 deposition via simultaneous addition of metal precursors. Subsequently, these catalysts were characterized by employing various characterization techniques and systems such as X-Ray Diffaction (XRD), Thermogravimetric Analysis (TGA), Inductively Coupled Plasma Mass Spectrometer (ICP-MS), Transmission Electron Microscopy (TEM), Raman Spectroscopy, Cyclic Voltammetry (CV), Rotating Disk Electrode (RDE) and PEM Fuel Cell performance tests. The obtained results revealed the formation of bimetallic catalysts within the size ranges from 1.6 to 2.1 nm. Furthermore, CV results demonstrate that PtNi/GNPs catalyst exhibit significantly high catalytic activity toward the PEM fuel cell reaction in comparison with the PtFe/GNPs and PtCu/GNPs. Also, PtNi/GNPs catalyst show about 2–4 times higher durability than the PtFe/GNPs and PtCu/GNPs catalysts in the accelerated degradation tests (ADTs). All results suggested that the PtNi/GNPs catalyst has great potential for PEM fuel cell applications." @default.
- W3155223889 created "2021-04-26" @default.
- W3155223889 creator A5025368418 @default.
- W3155223889 creator A5045888919 @default.
- W3155223889 creator A5078859202 @default.
- W3155223889 date "2021-09-01" @default.
- W3155223889 modified "2023-10-16" @default.
- W3155223889 title "Simultaneously deposited Pt-alloy nanoparticles over graphene nanoplatelets via supercritical carbon dioxide deposition for PEM fuel cells" @default.
- W3155223889 cites W1467027916 @default.
- W3155223889 cites W1775183869 @default.
- W3155223889 cites W1952901979 @default.
- W3155223889 cites W1963967674 @default.
- W3155223889 cites W1965552684 @default.
- W3155223889 cites W1965711227 @default.
- W3155223889 cites W1970392736 @default.
- W3155223889 cites W1974903080 @default.
- W3155223889 cites W1979224773 @default.
- W3155223889 cites W1982057754 @default.
- W3155223889 cites W1986669188 @default.
- W3155223889 cites W1990201792 @default.
- W3155223889 cites W1991928146 @default.
- W3155223889 cites W1992685644 @default.
- W3155223889 cites W2011836898 @default.
- W3155223889 cites W2014935324 @default.
- W3155223889 cites W2018723194 @default.
- W3155223889 cites W2019922200 @default.
- W3155223889 cites W2022299938 @default.
- W3155223889 cites W2028717487 @default.
- W3155223889 cites W2030236892 @default.
- W3155223889 cites W2039922946 @default.
- W3155223889 cites W2041907375 @default.
- W3155223889 cites W2042760640 @default.
- W3155223889 cites W2050870293 @default.
- W3155223889 cites W2054922733 @default.
- W3155223889 cites W2055552277 @default.
- W3155223889 cites W2056830818 @default.
- W3155223889 cites W2056885601 @default.
- W3155223889 cites W2064731534 @default.
- W3155223889 cites W2065388303 @default.
- W3155223889 cites W2067126321 @default.
- W3155223889 cites W2074207002 @default.
- W3155223889 cites W2089336527 @default.
- W3155223889 cites W2131347850 @default.
- W3155223889 cites W2144481235 @default.
- W3155223889 cites W2146358314 @default.
- W3155223889 cites W2235679284 @default.
- W3155223889 cites W2261631161 @default.
- W3155223889 cites W2281910036 @default.
- W3155223889 cites W2312565098 @default.
- W3155223889 cites W2314122638 @default.
- W3155223889 cites W2314283937 @default.
- W3155223889 cites W2346136236 @default.
- W3155223889 cites W2356580269 @default.
- W3155223889 cites W2418854968 @default.
- W3155223889 cites W2490815468 @default.
- W3155223889 cites W2525494428 @default.
- W3155223889 cites W2531992972 @default.
- W3155223889 cites W2559437995 @default.
- W3155223889 cites W2560077433 @default.
- W3155223889 cites W2560812708 @default.
- W3155223889 cites W2586755918 @default.
- W3155223889 cites W2597023126 @default.
- W3155223889 cites W2609045954 @default.
- W3155223889 cites W2734492319 @default.
- W3155223889 cites W2738227255 @default.
- W3155223889 cites W2739711577 @default.
- W3155223889 cites W2746253557 @default.
- W3155223889 cites W2754254517 @default.
- W3155223889 cites W2786934236 @default.
- W3155223889 cites W2808640380 @default.
- W3155223889 cites W2883691426 @default.
- W3155223889 cites W2900719134 @default.
- W3155223889 cites W2906130472 @default.
- W3155223889 cites W2907250228 @default.
- W3155223889 cites W2907988105 @default.
- W3155223889 cites W2918578770 @default.
- W3155223889 cites W2922898795 @default.
- W3155223889 cites W2937007106 @default.
- W3155223889 cites W2959853327 @default.
- W3155223889 cites W2961642975 @default.
- W3155223889 cites W2980492692 @default.
- W3155223889 cites W2986718885 @default.
- W3155223889 cites W3000846534 @default.
- W3155223889 cites W3036975613 @default.
- W3155223889 cites W3037142174 @default.
- W3155223889 cites W3094717254 @default.
- W3155223889 doi "https://doi.org/10.1016/j.jallcom.2021.159919" @default.
- W3155223889 hasPublicationYear "2021" @default.
- W3155223889 type Work @default.
- W3155223889 sameAs 3155223889 @default.
- W3155223889 citedByCount "10" @default.
- W3155223889 countsByYear W31552238892022 @default.
- W3155223889 countsByYear W31552238892023 @default.
- W3155223889 crossrefType "journal-article" @default.
- W3155223889 hasAuthorship W3155223889A5025368418 @default.
- W3155223889 hasAuthorship W3155223889A5045888919 @default.
- W3155223889 hasAuthorship W3155223889A5078859202 @default.
- W3155223889 hasConcept C118419359 @default.