Matches in SemOpenAlex for { <https://semopenalex.org/work/W3155227979> ?p ?o ?g. }
- W3155227979 endingPage "447" @default.
- W3155227979 startingPage "427" @default.
- W3155227979 abstract "Coronary artery disease (CAD) and congestive heart failure (CHF) lead to many deaths worldwide. Generally, an electrocardiogram (ECG) is employed as the diagnostic tool for CAD/CHF recognition. However, since ECG changes are sometimes subtle, visually distinguishing long-term ECG abnormalities is time consuming and laborious. To address these issues, we proposed a novel two-channel hybrid convolutional network (THC-Net) for automatic ECG recognition. THC-Net contains a canonical correlation analysis (CCA)-principal component analysis (PCA) convolutional network, an independent component analysis (ICA)-PCA convolutional network, and a Dempster-Shafer (D-S) theory-based linear support vector machine (SVM). The CCA-PCA and ICA-PCA convolutional networks are developed to extract deep features containing the lead-correlation and lead-specific information, respectively, from ECGs. Compared to common convolutional neural networks (CNNs), their kernels can be directly extracted by CCA, ICA, and PCA with a faster training time. Then, the D-S theory-based linear SVM, which can process multi-channel uncertainty information, is employed as the classification model. In this work, an accuracy of 95.54% was obtained for classifying normal, CHF and CAD patients based on leave-one-out cross-validation. Additionally, experiments on multi-level noisy and imbalanced data yielded remarkable results. Hence, the proposed method has the potential to diagnose CAD and CHF in clinical settings." @default.
- W3155227979 created "2021-04-26" @default.
- W3155227979 creator A5021687717 @default.
- W3155227979 creator A5038239768 @default.
- W3155227979 creator A5040455065 @default.
- W3155227979 creator A5052304130 @default.
- W3155227979 creator A5061856481 @default.
- W3155227979 creator A5066173871 @default.
- W3155227979 creator A5068462700 @default.
- W3155227979 creator A5076512552 @default.
- W3155227979 date "2021-08-01" @default.
- W3155227979 modified "2023-10-14" @default.
- W3155227979 title "A novel method for automated congestive heart failure and coronary artery disease recognition using THC-Net" @default.
- W3155227979 cites W2026118521 @default.
- W3155227979 cites W2065506507 @default.
- W3155227979 cites W2100537461 @default.
- W3155227979 cites W2125654608 @default.
- W3155227979 cites W2162800060 @default.
- W3155227979 cites W2194775991 @default.
- W3155227979 cites W2515571120 @default.
- W3155227979 cites W2517449108 @default.
- W3155227979 cites W2523192554 @default.
- W3155227979 cites W2527796983 @default.
- W3155227979 cites W2532144455 @default.
- W3155227979 cites W2586172422 @default.
- W3155227979 cites W2594929769 @default.
- W3155227979 cites W2605056515 @default.
- W3155227979 cites W2620729202 @default.
- W3155227979 cites W2680172233 @default.
- W3155227979 cites W2702116941 @default.
- W3155227979 cites W2748902594 @default.
- W3155227979 cites W2754370772 @default.
- W3155227979 cites W2766385454 @default.
- W3155227979 cites W2781924583 @default.
- W3155227979 cites W2795967890 @default.
- W3155227979 cites W2802832784 @default.
- W3155227979 cites W2808616266 @default.
- W3155227979 cites W2915509563 @default.
- W3155227979 cites W2922378453 @default.
- W3155227979 cites W2963565281 @default.
- W3155227979 cites W3001683732 @default.
- W3155227979 cites W3008143116 @default.
- W3155227979 cites W3012135843 @default.
- W3155227979 cites W3032024931 @default.
- W3155227979 cites W3095656533 @default.
- W3155227979 cites W3102974889 @default.
- W3155227979 cites W4211143770 @default.
- W3155227979 doi "https://doi.org/10.1016/j.ins.2021.04.036" @default.
- W3155227979 hasPublicationYear "2021" @default.
- W3155227979 type Work @default.
- W3155227979 sameAs 3155227979 @default.
- W3155227979 citedByCount "7" @default.
- W3155227979 countsByYear W31552279792021 @default.
- W3155227979 countsByYear W31552279792023 @default.
- W3155227979 crossrefType "journal-article" @default.
- W3155227979 hasAuthorship W3155227979A5021687717 @default.
- W3155227979 hasAuthorship W3155227979A5038239768 @default.
- W3155227979 hasAuthorship W3155227979A5040455065 @default.
- W3155227979 hasAuthorship W3155227979A5052304130 @default.
- W3155227979 hasAuthorship W3155227979A5061856481 @default.
- W3155227979 hasAuthorship W3155227979A5066173871 @default.
- W3155227979 hasAuthorship W3155227979A5068462700 @default.
- W3155227979 hasAuthorship W3155227979A5076512552 @default.
- W3155227979 hasConcept C12267149 @default.
- W3155227979 hasConcept C127413603 @default.
- W3155227979 hasConcept C153180895 @default.
- W3155227979 hasConcept C154945302 @default.
- W3155227979 hasConcept C164705383 @default.
- W3155227979 hasConcept C194789388 @default.
- W3155227979 hasConcept C199639397 @default.
- W3155227979 hasConcept C27438332 @default.
- W3155227979 hasConcept C2778198053 @default.
- W3155227979 hasConcept C2778213512 @default.
- W3155227979 hasConcept C41008148 @default.
- W3155227979 hasConcept C51432778 @default.
- W3155227979 hasConcept C71924100 @default.
- W3155227979 hasConcept C81363708 @default.
- W3155227979 hasConceptScore W3155227979C12267149 @default.
- W3155227979 hasConceptScore W3155227979C127413603 @default.
- W3155227979 hasConceptScore W3155227979C153180895 @default.
- W3155227979 hasConceptScore W3155227979C154945302 @default.
- W3155227979 hasConceptScore W3155227979C164705383 @default.
- W3155227979 hasConceptScore W3155227979C194789388 @default.
- W3155227979 hasConceptScore W3155227979C199639397 @default.
- W3155227979 hasConceptScore W3155227979C27438332 @default.
- W3155227979 hasConceptScore W3155227979C2778198053 @default.
- W3155227979 hasConceptScore W3155227979C2778213512 @default.
- W3155227979 hasConceptScore W3155227979C41008148 @default.
- W3155227979 hasConceptScore W3155227979C51432778 @default.
- W3155227979 hasConceptScore W3155227979C71924100 @default.
- W3155227979 hasConceptScore W3155227979C81363708 @default.
- W3155227979 hasLocation W31552279791 @default.
- W3155227979 hasOpenAccess W3155227979 @default.
- W3155227979 hasPrimaryLocation W31552279791 @default.
- W3155227979 hasRelatedWork W1720164552 @default.
- W3155227979 hasRelatedWork W2012981356 @default.
- W3155227979 hasRelatedWork W2046761971 @default.
- W3155227979 hasRelatedWork W2061090220 @default.