Matches in SemOpenAlex for { <https://semopenalex.org/work/W3155282375> ?p ?o ?g. }
- W3155282375 endingPage "2245" @default.
- W3155282375 startingPage "2233" @default.
- W3155282375 abstract "Reliable motion estimation and strain analysis using 3D+ time echocardiography (4DE) for localization and characterization of myocardial injury is valuable for early detection and targeted interventions. However, motion estimation is difficult due to the low-SNR that stems from the inherent image properties of 4DE, and intelligent regularization is critical for producing reliable motion estimates. In this work, we incorporated the notion of domain adaptation into a supervised neural network regularization framework. We first propose a semi-supervised Multi-Layered Perceptron (MLP) network with biomechanical constraints for learning a latent representation that is shown to have more physiologically plausible displacements. We extended this framework to include a supervised loss term on synthetic data and showed the effects of biomechanical constraints on the network's ability for domain adaptation. We validated the semi-supervised regularization method on in vivo data with implanted sonomicrometers. Finally, we showed the ability of our semi-supervised learning regularization approach to identify infarct regions using estimated regional strain maps with good agreement to manually traced infarct regions from postmortem excised hearts." @default.
- W3155282375 created "2021-04-26" @default.
- W3155282375 creator A5013220822 @default.
- W3155282375 creator A5029598460 @default.
- W3155282375 creator A5036427123 @default.
- W3155282375 creator A5040167774 @default.
- W3155282375 creator A5041557267 @default.
- W3155282375 creator A5043587571 @default.
- W3155282375 creator A5046673670 @default.
- W3155282375 creator A5050489818 @default.
- W3155282375 creator A5061669274 @default.
- W3155282375 creator A5065114207 @default.
- W3155282375 creator A5069070301 @default.
- W3155282375 creator A5085020647 @default.
- W3155282375 date "2021-09-01" @default.
- W3155282375 modified "2023-10-14" @default.
- W3155282375 title "Learning-Based Regularization for Cardiac Strain Analysis via Domain Adaptation" @default.
- W3155282375 cites W1578285471 @default.
- W3155282375 cites W1884565435 @default.
- W3155282375 cites W1920962657 @default.
- W3155282375 cites W1973391164 @default.
- W3155282375 cites W1976977664 @default.
- W3155282375 cites W1981752548 @default.
- W3155282375 cites W1983205561 @default.
- W3155282375 cites W2002100090 @default.
- W3155282375 cites W2005126631 @default.
- W3155282375 cites W2083704705 @default.
- W3155282375 cites W2085789144 @default.
- W3155282375 cites W2096619076 @default.
- W3155282375 cites W2104375408 @default.
- W3155282375 cites W2113576511 @default.
- W3155282375 cites W2115779572 @default.
- W3155282375 cites W2116390358 @default.
- W3155282375 cites W2117333116 @default.
- W3155282375 cites W2127735446 @default.
- W3155282375 cites W2152620868 @default.
- W3155282375 cites W2155894935 @default.
- W3155282375 cites W2157364932 @default.
- W3155282375 cites W2159617609 @default.
- W3155282375 cites W2161953947 @default.
- W3155282375 cites W2165734775 @default.
- W3155282375 cites W2171206037 @default.
- W3155282375 cites W2171790646 @default.
- W3155282375 cites W2275973573 @default.
- W3155282375 cites W2395240779 @default.
- W3155282375 cites W2478454054 @default.
- W3155282375 cites W2526801888 @default.
- W3155282375 cites W2543444369 @default.
- W3155282375 cites W2584009249 @default.
- W3155282375 cites W2593768305 @default.
- W3155282375 cites W2751096490 @default.
- W3155282375 cites W2753647007 @default.
- W3155282375 cites W2794202166 @default.
- W3155282375 cites W3010254652 @default.
- W3155282375 cites W3096831136 @default.
- W3155282375 cites W995061013 @default.
- W3155282375 doi "https://doi.org/10.1109/tmi.2021.3074033" @default.
- W3155282375 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8442959" @default.
- W3155282375 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33872145" @default.
- W3155282375 hasPublicationYear "2021" @default.
- W3155282375 type Work @default.
- W3155282375 sameAs 3155282375 @default.
- W3155282375 citedByCount "10" @default.
- W3155282375 countsByYear W31552823752021 @default.
- W3155282375 countsByYear W31552823752022 @default.
- W3155282375 countsByYear W31552823752023 @default.
- W3155282375 crossrefType "journal-article" @default.
- W3155282375 hasAuthorship W3155282375A5013220822 @default.
- W3155282375 hasAuthorship W3155282375A5029598460 @default.
- W3155282375 hasAuthorship W3155282375A5036427123 @default.
- W3155282375 hasAuthorship W3155282375A5040167774 @default.
- W3155282375 hasAuthorship W3155282375A5041557267 @default.
- W3155282375 hasAuthorship W3155282375A5043587571 @default.
- W3155282375 hasAuthorship W3155282375A5046673670 @default.
- W3155282375 hasAuthorship W3155282375A5050489818 @default.
- W3155282375 hasAuthorship W3155282375A5061669274 @default.
- W3155282375 hasAuthorship W3155282375A5065114207 @default.
- W3155282375 hasAuthorship W3155282375A5069070301 @default.
- W3155282375 hasAuthorship W3155282375A5085020647 @default.
- W3155282375 hasBestOaLocation W31552823751 @default.
- W3155282375 hasConcept C119857082 @default.
- W3155282375 hasConcept C134306372 @default.
- W3155282375 hasConcept C135252773 @default.
- W3155282375 hasConcept C141718189 @default.
- W3155282375 hasConcept C152442038 @default.
- W3155282375 hasConcept C153180895 @default.
- W3155282375 hasConcept C154945302 @default.
- W3155282375 hasConcept C160920958 @default.
- W3155282375 hasConcept C2776135515 @default.
- W3155282375 hasConcept C2776434776 @default.
- W3155282375 hasConcept C33923547 @default.
- W3155282375 hasConcept C41008148 @default.
- W3155282375 hasConcept C50644808 @default.
- W3155282375 hasConcept C95623464 @default.
- W3155282375 hasConceptScore W3155282375C119857082 @default.
- W3155282375 hasConceptScore W3155282375C134306372 @default.
- W3155282375 hasConceptScore W3155282375C135252773 @default.
- W3155282375 hasConceptScore W3155282375C141718189 @default.