Matches in SemOpenAlex for { <https://semopenalex.org/work/W3155287659> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W3155287659 endingPage "100020" @default.
- W3155287659 startingPage "100020" @default.
- W3155287659 abstract "Terrorism can be described as the use of violence against persons or properties to intimidate or coerce a government or its citizens to some certain political or social objectives. It is a global problem which has led to loss of lives and properties and known to have negative impacts on tourism and global economy. Terrorism has also been associated with high level of insecurity and most nations of the world are interested in any research efforts that can reduce its menace. Most of the research efforts on terrorism have focused on measures to fight terrorism or how to reduce the activities of terrorists but there are limited efforts on terrorism prediction. The aim of this work is to develop an ensemble machine learning model which combines Support Vector Machine and K-Nearest Neighbor for prediction of continents susceptible to terrorism. Data was obtained from Global Terrorism Database and data preprocessing included data cleaning and dimensionality reduction. Two feature selection techniques, Chi-squared, Information Gain and a hybrid of both were applied to the dataset before modeling. Ensemble machine learning models were then constructed and applied on the selected features. Chi-squared, Information Gain and the hybrid-based features produced an accuracy of 94.17%, 97.34% and 97.81% respectively at predicting danger zones with respective sensitivity scores of 82.3%, 88.7% and 92.2% and specificity scores of 98%, 90.5% and 99.67% respectively. These imply that the hybrid-based selected features produced the best results among the feature selection techniques at predicting terrorism locations. Our results show that ensemble machine learning model can accurately predict terrorism locations." @default.
- W3155287659 created "2021-04-26" @default.
- W3155287659 creator A5001767996 @default.
- W3155287659 creator A5044057821 @default.
- W3155287659 creator A5075175655 @default.
- W3155287659 creator A5078677480 @default.
- W3155287659 date "2021-12-01" @default.
- W3155287659 modified "2023-10-03" @default.
- W3155287659 title "An ensemble machine learning model for the prediction of danger zones: Towards a global counter-terrorism" @default.
- W3155287659 cites W178124997 @default.
- W3155287659 cites W1972105164 @default.
- W3155287659 cites W1979033903 @default.
- W3155287659 cites W2018937339 @default.
- W3155287659 cites W2070536799 @default.
- W3155287659 cites W2168676486 @default.
- W3155287659 cites W2413329758 @default.
- W3155287659 cites W2886710006 @default.
- W3155287659 cites W2888898286 @default.
- W3155287659 cites W2939793098 @default.
- W3155287659 cites W3018321396 @default.
- W3155287659 cites W3082271970 @default.
- W3155287659 cites W3155501578 @default.
- W3155287659 cites W4234831146 @default.
- W3155287659 doi "https://doi.org/10.1016/j.socl.2021.100020" @default.
- W3155287659 hasPublicationYear "2021" @default.
- W3155287659 type Work @default.
- W3155287659 sameAs 3155287659 @default.
- W3155287659 citedByCount "6" @default.
- W3155287659 countsByYear W31552876592022 @default.
- W3155287659 countsByYear W31552876592023 @default.
- W3155287659 crossrefType "journal-article" @default.
- W3155287659 hasAuthorship W3155287659A5001767996 @default.
- W3155287659 hasAuthorship W3155287659A5044057821 @default.
- W3155287659 hasAuthorship W3155287659A5075175655 @default.
- W3155287659 hasAuthorship W3155287659A5078677480 @default.
- W3155287659 hasBestOaLocation W31552876591 @default.
- W3155287659 hasConcept C10551718 @default.
- W3155287659 hasConcept C111030470 @default.
- W3155287659 hasConcept C119857082 @default.
- W3155287659 hasConcept C12267149 @default.
- W3155287659 hasConcept C138885662 @default.
- W3155287659 hasConcept C148483581 @default.
- W3155287659 hasConcept C154945302 @default.
- W3155287659 hasConcept C17744445 @default.
- W3155287659 hasConcept C199539241 @default.
- W3155287659 hasConcept C203133693 @default.
- W3155287659 hasConcept C2776401178 @default.
- W3155287659 hasConcept C2778137410 @default.
- W3155287659 hasConcept C34736171 @default.
- W3155287659 hasConcept C41008148 @default.
- W3155287659 hasConcept C41895202 @default.
- W3155287659 hasConcept C45942800 @default.
- W3155287659 hasConcept C70518039 @default.
- W3155287659 hasConceptScore W3155287659C10551718 @default.
- W3155287659 hasConceptScore W3155287659C111030470 @default.
- W3155287659 hasConceptScore W3155287659C119857082 @default.
- W3155287659 hasConceptScore W3155287659C12267149 @default.
- W3155287659 hasConceptScore W3155287659C138885662 @default.
- W3155287659 hasConceptScore W3155287659C148483581 @default.
- W3155287659 hasConceptScore W3155287659C154945302 @default.
- W3155287659 hasConceptScore W3155287659C17744445 @default.
- W3155287659 hasConceptScore W3155287659C199539241 @default.
- W3155287659 hasConceptScore W3155287659C203133693 @default.
- W3155287659 hasConceptScore W3155287659C2776401178 @default.
- W3155287659 hasConceptScore W3155287659C2778137410 @default.
- W3155287659 hasConceptScore W3155287659C34736171 @default.
- W3155287659 hasConceptScore W3155287659C41008148 @default.
- W3155287659 hasConceptScore W3155287659C41895202 @default.
- W3155287659 hasConceptScore W3155287659C45942800 @default.
- W3155287659 hasConceptScore W3155287659C70518039 @default.
- W3155287659 hasLocation W31552876591 @default.
- W3155287659 hasLocation W31552876592 @default.
- W3155287659 hasOpenAccess W3155287659 @default.
- W3155287659 hasPrimaryLocation W31552876591 @default.
- W3155287659 hasRelatedWork W1565353469 @default.
- W3155287659 hasRelatedWork W1661871015 @default.
- W3155287659 hasRelatedWork W2080184650 @default.
- W3155287659 hasRelatedWork W2087016914 @default.
- W3155287659 hasRelatedWork W2379648024 @default.
- W3155287659 hasRelatedWork W2625109547 @default.
- W3155287659 hasRelatedWork W3155287659 @default.
- W3155287659 hasRelatedWork W3216353431 @default.
- W3155287659 hasRelatedWork W4200087987 @default.
- W3155287659 hasRelatedWork W2583661881 @default.
- W3155287659 hasVolume "3" @default.
- W3155287659 isParatext "false" @default.
- W3155287659 isRetracted "false" @default.
- W3155287659 magId "3155287659" @default.
- W3155287659 workType "article" @default.