Matches in SemOpenAlex for { <https://semopenalex.org/work/W3155348064> ?p ?o ?g. }
- W3155348064 endingPage "100033" @default.
- W3155348064 startingPage "100033" @default.
- W3155348064 abstract "To complete a scoping review of the literature investigating the performance of artificial intelligence (AI) systems currently in development for their ability to detect fractures on plain radiographic images. A systematic approach was adopted to identify papers for inclusion in this scoping review and utilised the Preferred Reporting Items for Systematic Reviews and Meta-Analysis Statement (PRISMA). Following application of inclusion and exclusion criteria, sixteen studies were included in the final review. With the exception of one study, all studies report that AI models demonstrated an ability to perform fracture identification tasks on plain skeletal radiographs. Metrics used to report performance are variable throughout all reviewed studies and include area under the receiver operating characteristic curve (AUC), sensitivity and specificity, positive predictive value, negative predictive value, precision, recall, F1 score and accuracy. Reported performances for studies indicated AUC values range from AUC 0.78 (weakest) to the best performing system reporting AUC 0.99. The review found a great variation in the AI model architectures, training and testing methodology as well as the metrics used to report the performance of the networks. A standardisation of the reporting metrics and methods would permit comparison of proposed models and training methods which may accelerate the testing of AI systems in the clinical setting. Prevalence agnostic metrics should be used to reflect the true performance of such systems. Many studies lacked any explainability for the algorithmic decision making of the AI models, and there was a lack of interrogation into the potential reasons for misclassification errors. This type of ‘failure analysis’ would have provided insight into the biases and the aetiology of AI misclassifications." @default.
- W3155348064 created "2021-04-26" @default.
- W3155348064 creator A5031200191 @default.
- W3155348064 creator A5039364893 @default.
- W3155348064 creator A5057771826 @default.
- W3155348064 creator A5067279312 @default.
- W3155348064 creator A5081945460 @default.
- W3155348064 date "2021-01-01" @default.
- W3155348064 modified "2023-09-26" @default.
- W3155348064 title "Artificial intelligence for diagnosis of fractures on plain radiographs: A scoping review of current literature" @default.
- W3155348064 cites W2151166219 @default.
- W3155348064 cites W2151251813 @default.
- W3155348064 cites W2533800772 @default.
- W3155348064 cites W2582555581 @default.
- W3155348064 cites W2588978745 @default.
- W3155348064 cites W2733840449 @default.
- W3155348064 cites W2776581140 @default.
- W3155348064 cites W2791920958 @default.
- W3155348064 cites W2793251588 @default.
- W3155348064 cites W2796925382 @default.
- W3155348064 cites W2809373841 @default.
- W3155348064 cites W2811095288 @default.
- W3155348064 cites W2884015715 @default.
- W3155348064 cites W2887021901 @default.
- W3155348064 cites W2897228760 @default.
- W3155348064 cites W2912078891 @default.
- W3155348064 cites W2912558669 @default.
- W3155348064 cites W2934730619 @default.
- W3155348064 cites W2935090763 @default.
- W3155348064 cites W2939071985 @default.
- W3155348064 cites W2940354300 @default.
- W3155348064 cites W2948117846 @default.
- W3155348064 cites W3011921115 @default.
- W3155348064 cites W3013681994 @default.
- W3155348064 cites W3013902712 @default.
- W3155348064 cites W3014892441 @default.
- W3155348064 cites W3019301429 @default.
- W3155348064 cites W3094138545 @default.
- W3155348064 doi "https://doi.org/10.1016/j.ibmed.2021.100033" @default.
- W3155348064 hasPublicationYear "2021" @default.
- W3155348064 type Work @default.
- W3155348064 sameAs 3155348064 @default.
- W3155348064 citedByCount "7" @default.
- W3155348064 countsByYear W31553480642021 @default.
- W3155348064 countsByYear W31553480642022 @default.
- W3155348064 countsByYear W31553480642023 @default.
- W3155348064 crossrefType "journal-article" @default.
- W3155348064 hasAuthorship W3155348064A5031200191 @default.
- W3155348064 hasAuthorship W3155348064A5039364893 @default.
- W3155348064 hasAuthorship W3155348064A5057771826 @default.
- W3155348064 hasAuthorship W3155348064A5067279312 @default.
- W3155348064 hasAuthorship W3155348064A5081945460 @default.
- W3155348064 hasBestOaLocation W31553480641 @default.
- W3155348064 hasConcept C116834253 @default.
- W3155348064 hasConcept C119857082 @default.
- W3155348064 hasConcept C124101348 @default.
- W3155348064 hasConcept C142724271 @default.
- W3155348064 hasConcept C148524875 @default.
- W3155348064 hasConcept C154945302 @default.
- W3155348064 hasConcept C17744445 @default.
- W3155348064 hasConcept C189708586 @default.
- W3155348064 hasConcept C19527891 @default.
- W3155348064 hasConcept C199539241 @default.
- W3155348064 hasConcept C204787440 @default.
- W3155348064 hasConcept C2777596629 @default.
- W3155348064 hasConcept C2779473830 @default.
- W3155348064 hasConcept C41008148 @default.
- W3155348064 hasConcept C58471807 @default.
- W3155348064 hasConcept C59822182 @default.
- W3155348064 hasConcept C71924100 @default.
- W3155348064 hasConcept C86803240 @default.
- W3155348064 hasConceptScore W3155348064C116834253 @default.
- W3155348064 hasConceptScore W3155348064C119857082 @default.
- W3155348064 hasConceptScore W3155348064C124101348 @default.
- W3155348064 hasConceptScore W3155348064C142724271 @default.
- W3155348064 hasConceptScore W3155348064C148524875 @default.
- W3155348064 hasConceptScore W3155348064C154945302 @default.
- W3155348064 hasConceptScore W3155348064C17744445 @default.
- W3155348064 hasConceptScore W3155348064C189708586 @default.
- W3155348064 hasConceptScore W3155348064C19527891 @default.
- W3155348064 hasConceptScore W3155348064C199539241 @default.
- W3155348064 hasConceptScore W3155348064C204787440 @default.
- W3155348064 hasConceptScore W3155348064C2777596629 @default.
- W3155348064 hasConceptScore W3155348064C2779473830 @default.
- W3155348064 hasConceptScore W3155348064C41008148 @default.
- W3155348064 hasConceptScore W3155348064C58471807 @default.
- W3155348064 hasConceptScore W3155348064C59822182 @default.
- W3155348064 hasConceptScore W3155348064C71924100 @default.
- W3155348064 hasConceptScore W3155348064C86803240 @default.
- W3155348064 hasLocation W31553480641 @default.
- W3155348064 hasLocation W31553480642 @default.
- W3155348064 hasLocation W31553480643 @default.
- W3155348064 hasOpenAccess W3155348064 @default.
- W3155348064 hasPrimaryLocation W31553480641 @default.
- W3155348064 hasRelatedWork W2605281151 @default.
- W3155348064 hasRelatedWork W2947903144 @default.
- W3155348064 hasRelatedWork W2989759966 @default.
- W3155348064 hasRelatedWork W3080910144 @default.