Matches in SemOpenAlex for { <https://semopenalex.org/work/W3155371252> ?p ?o ?g. }
- W3155371252 endingPage "5491" @default.
- W3155371252 startingPage "5480" @default.
- W3155371252 abstract "Due to the benefits of reduced maintenance cost and increased operational safety, effective prognostic methods have always been highly demanded in real industries. In the recent years, intelligent data-driven remaining useful life (RUL) prediction approaches have been successfully developed and achieved promising performance. However, the existing methods mostly set hard RUL labels on the training data and pay less attention to the degradation pattern variations of different entities. This article proposes a deep learning-based RUL prediction method. The cycle-consistent learning scheme is proposed to achieve a new representation space, where the data of different entities in similar degradation levels can be well aligned. A first predicting time determination approach is further proposed, which facilitates the following degradation percentage estimation and RUL prediction tasks. The experimental results on a popular degradation data set suggest that the proposed method offers a novel perspective on data-driven prognostic studies and a promising tool for RUL estimations." @default.
- W3155371252 created "2021-04-26" @default.
- W3155371252 creator A5015815806 @default.
- W3155371252 creator A5035716291 @default.
- W3155371252 creator A5044658392 @default.
- W3155371252 creator A5045830368 @default.
- W3155371252 creator A5086677714 @default.
- W3155371252 date "2022-10-01" @default.
- W3155371252 modified "2023-10-16" @default.
- W3155371252 title "Degradation Alignment in Remaining Useful Life Prediction Using Deep Cycle-Consistent Learning" @default.
- W3155371252 cites W1988655998 @default.
- W3155371252 cites W2005523062 @default.
- W3155371252 cites W2007952268 @default.
- W3155371252 cites W2033800551 @default.
- W3155371252 cites W2053443947 @default.
- W3155371252 cites W2054570131 @default.
- W3155371252 cites W2057018442 @default.
- W3155371252 cites W2078098002 @default.
- W3155371252 cites W2110787940 @default.
- W3155371252 cites W2113862810 @default.
- W3155371252 cites W2120841219 @default.
- W3155371252 cites W2163922914 @default.
- W3155371252 cites W2342958238 @default.
- W3155371252 cites W2415594836 @default.
- W3155371252 cites W2471161958 @default.
- W3155371252 cites W2473294140 @default.
- W3155371252 cites W2558869916 @default.
- W3155371252 cites W2564947831 @default.
- W3155371252 cites W2582337578 @default.
- W3155371252 cites W2591055632 @default.
- W3155371252 cites W2594845301 @default.
- W3155371252 cites W2612484771 @default.
- W3155371252 cites W2744067593 @default.
- W3155371252 cites W2772084711 @default.
- W3155371252 cites W2791939925 @default.
- W3155371252 cites W2792018332 @default.
- W3155371252 cites W2803884688 @default.
- W3155371252 cites W2891319189 @default.
- W3155371252 cites W2896451001 @default.
- W3155371252 cites W2900438754 @default.
- W3155371252 cites W2904218127 @default.
- W3155371252 cites W2906578288 @default.
- W3155371252 cites W2912073957 @default.
- W3155371252 cites W2922718228 @default.
- W3155371252 cites W2943154646 @default.
- W3155371252 cites W2945002553 @default.
- W3155371252 cites W2955033741 @default.
- W3155371252 cites W2962793481 @default.
- W3155371252 cites W2963863119 @default.
- W3155371252 cites W2964627014 @default.
- W3155371252 cites W2995758361 @default.
- W3155371252 cites W3016665419 @default.
- W3155371252 doi "https://doi.org/10.1109/tnnls.2021.3070840" @default.
- W3155371252 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33852404" @default.
- W3155371252 hasPublicationYear "2022" @default.
- W3155371252 type Work @default.
- W3155371252 sameAs 3155371252 @default.
- W3155371252 citedByCount "33" @default.
- W3155371252 countsByYear W31553712522021 @default.
- W3155371252 countsByYear W31553712522022 @default.
- W3155371252 countsByYear W31553712522023 @default.
- W3155371252 crossrefType "journal-article" @default.
- W3155371252 hasAuthorship W3155371252A5015815806 @default.
- W3155371252 hasAuthorship W3155371252A5035716291 @default.
- W3155371252 hasAuthorship W3155371252A5044658392 @default.
- W3155371252 hasAuthorship W3155371252A5045830368 @default.
- W3155371252 hasAuthorship W3155371252A5086677714 @default.
- W3155371252 hasConcept C108583219 @default.
- W3155371252 hasConcept C119857082 @default.
- W3155371252 hasConcept C124101348 @default.
- W3155371252 hasConcept C12713177 @default.
- W3155371252 hasConcept C134306372 @default.
- W3155371252 hasConcept C154945302 @default.
- W3155371252 hasConcept C177264268 @default.
- W3155371252 hasConcept C17744445 @default.
- W3155371252 hasConcept C199360897 @default.
- W3155371252 hasConcept C199539241 @default.
- W3155371252 hasConcept C2776359362 @default.
- W3155371252 hasConcept C2779679103 @default.
- W3155371252 hasConcept C33923547 @default.
- W3155371252 hasConcept C41008148 @default.
- W3155371252 hasConcept C51632099 @default.
- W3155371252 hasConcept C58489278 @default.
- W3155371252 hasConcept C76155785 @default.
- W3155371252 hasConcept C77618280 @default.
- W3155371252 hasConcept C94625758 @default.
- W3155371252 hasConceptScore W3155371252C108583219 @default.
- W3155371252 hasConceptScore W3155371252C119857082 @default.
- W3155371252 hasConceptScore W3155371252C124101348 @default.
- W3155371252 hasConceptScore W3155371252C12713177 @default.
- W3155371252 hasConceptScore W3155371252C134306372 @default.
- W3155371252 hasConceptScore W3155371252C154945302 @default.
- W3155371252 hasConceptScore W3155371252C177264268 @default.
- W3155371252 hasConceptScore W3155371252C17744445 @default.
- W3155371252 hasConceptScore W3155371252C199360897 @default.
- W3155371252 hasConceptScore W3155371252C199539241 @default.
- W3155371252 hasConceptScore W3155371252C2776359362 @default.
- W3155371252 hasConceptScore W3155371252C2779679103 @default.