Matches in SemOpenAlex for { <https://semopenalex.org/work/W3155404242> ?p ?o ?g. }
- W3155404242 abstract "With the progress of medical technology, biomedical field ushered in the era of big data, based on which and driven by artificial intelligence technology, computational medicine has emerged. People need to extract the effective information contained in these big biomedical data to promote the development of precision medicine. Traditionally, the machine learning methods are used to dig out biomedical data to find the features from data, which generally rely on feature engineering and domain knowledge of experts, requiring tremendous time and human resources. Different from traditional approaches, deep learning, as a cutting-edge machine learning branch, can automatically learn complex and robust feature from raw data without the need for feature engineering. The applications of deep learning in medical image, electronic health record, genomics, and drug development are studied, where the suggestion is that deep learning has obvious advantage in making full use of biomedical data and improving medical health level. Deep learning plays an increasingly important role in the field of medical health and has a broad prospect of application. However, the problems and challenges of deep learning in computational medical health still exist, including insufficient data, interpretability, data privacy, and heterogeneity. Analysis and discussion on these problems provide a reference to improve the application of deep learning in medical health." @default.
- W3155404242 created "2021-04-26" @default.
- W3155404242 creator A5012325495 @default.
- W3155404242 creator A5015527899 @default.
- W3155404242 creator A5034086449 @default.
- W3155404242 creator A5049872589 @default.
- W3155404242 creator A5060107207 @default.
- W3155404242 date "2021-04-12" @default.
- W3155404242 modified "2023-10-13" @default.
- W3155404242 title "Intelligent Health Care: Applications of Deep Learning in Computational Medicine" @default.
- W3155404242 cites W1951403192 @default.
- W3155404242 cites W1995562189 @default.
- W3155404242 cites W2004910511 @default.
- W3155404242 cites W2064675550 @default.
- W3155404242 cites W2117539524 @default.
- W3155404242 cites W2136922672 @default.
- W3155404242 cites W2194775991 @default.
- W3155404242 cites W2225391592 @default.
- W3155404242 cites W2253429366 @default.
- W3155404242 cites W2259632819 @default.
- W3155404242 cites W2264017649 @default.
- W3155404242 cites W2274227799 @default.
- W3155404242 cites W2284198383 @default.
- W3155404242 cites W2323929895 @default.
- W3155404242 cites W2326062726 @default.
- W3155404242 cites W2337093093 @default.
- W3155404242 cites W2341106171 @default.
- W3155404242 cites W2344912502 @default.
- W3155404242 cites W2345512687 @default.
- W3155404242 cites W2397757171 @default.
- W3155404242 cites W2404901863 @default.
- W3155404242 cites W2413582275 @default.
- W3155404242 cites W2424800769 @default.
- W3155404242 cites W2464708700 @default.
- W3155404242 cites W2473418344 @default.
- W3155404242 cites W2479945688 @default.
- W3155404242 cites W2481271618 @default.
- W3155404242 cites W2493683088 @default.
- W3155404242 cites W2508821345 @default.
- W3155404242 cites W2511950764 @default.
- W3155404242 cites W2521068627 @default.
- W3155404242 cites W2557738935 @default.
- W3155404242 cites W2559794190 @default.
- W3155404242 cites W2581082771 @default.
- W3155404242 cites W2589838901 @default.
- W3155404242 cites W2592742128 @default.
- W3155404242 cites W2597998853 @default.
- W3155404242 cites W2610332124 @default.
- W3155404242 cites W2625625371 @default.
- W3155404242 cites W2752747624 @default.
- W3155404242 cites W2754595644 @default.
- W3155404242 cites W2765224015 @default.
- W3155404242 cites W2765780881 @default.
- W3155404242 cites W2775061087 @default.
- W3155404242 cites W2781091734 @default.
- W3155404242 cites W2785947426 @default.
- W3155404242 cites W2788633781 @default.
- W3155404242 cites W2791447208 @default.
- W3155404242 cites W2806853752 @default.
- W3155404242 cites W2883945062 @default.
- W3155404242 cites W2886281300 @default.
- W3155404242 cites W2897007327 @default.
- W3155404242 cites W2900694973 @default.
- W3155404242 cites W2905215896 @default.
- W3155404242 cites W2921808728 @default.
- W3155404242 cites W2928673187 @default.
- W3155404242 cites W2945027804 @default.
- W3155404242 cites W2946099214 @default.
- W3155404242 cites W2949231527 @default.
- W3155404242 cites W2951218167 @default.
- W3155404242 cites W2951280218 @default.
- W3155404242 cites W2952482786 @default.
- W3155404242 cites W2952935243 @default.
- W3155404242 cites W2953262163 @default.
- W3155404242 cites W2963202012 @default.
- W3155404242 cites W2963952467 @default.
- W3155404242 cites W2964010366 @default.
- W3155404242 cites W2964304355 @default.
- W3155404242 cites W2964611710 @default.
- W3155404242 cites W2996140569 @default.
- W3155404242 cites W3000369508 @default.
- W3155404242 cites W3001485171 @default.
- W3155404242 cites W3004874934 @default.
- W3155404242 cites W3005064662 @default.
- W3155404242 cites W3010821291 @default.
- W3155404242 cites W3014321973 @default.
- W3155404242 cites W3026475692 @default.
- W3155404242 cites W3036735590 @default.
- W3155404242 cites W3043595751 @default.
- W3155404242 cites W3098150009 @default.
- W3155404242 cites W3098949126 @default.
- W3155404242 cites W3103194435 @default.
- W3155404242 cites W3103400039 @default.
- W3155404242 cites W3105636206 @default.
- W3155404242 doi "https://doi.org/10.3389/fgene.2021.607471" @default.
- W3155404242 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8075004" @default.
- W3155404242 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33912213" @default.
- W3155404242 hasPublicationYear "2021" @default.
- W3155404242 type Work @default.
- W3155404242 sameAs 3155404242 @default.