Matches in SemOpenAlex for { <https://semopenalex.org/work/W3155731460> ?p ?o ?g. }
- W3155731460 abstract "This paper presents the results and insights from the black-box optimization (BBO) challenge at NeurIPS 2020 which ran from July-October, 2020. The challenge emphasized the importance of evaluating derivative-free optimizers for tuning the hyperparameters of machine learning models. This was the first black-box optimization challenge with a machine learning emphasis. It was based on tuning (validation set) performance of standard machine learning models on real datasets. This competition has widespread impact as black-box optimization (e.g., Bayesian optimization) is relevant for hyperparameter tuning in almost every machine learning project as well as many applications outside of machine learning. The final leaderboard was determined using the optimization performance on held-out (hidden) objective functions, where the optimizers ran without human intervention. Baselines were set using the default settings of several open-source black-box optimization packages as well as random search." @default.
- W3155731460 created "2021-04-26" @default.
- W3155731460 creator A5005386418 @default.
- W3155731460 creator A5006360335 @default.
- W3155731460 creator A5030000580 @default.
- W3155731460 creator A5037355311 @default.
- W3155731460 creator A5042358015 @default.
- W3155731460 creator A5048926641 @default.
- W3155731460 creator A5054307848 @default.
- W3155731460 date "2021-04-20" @default.
- W3155731460 modified "2023-10-03" @default.
- W3155731460 title "Bayesian Optimization is Superior to Random Search for Machine Learning Hyperparameter Tuning: Analysis of the Black-Box Optimization Challenge 2020" @default.
- W3155731460 cites W1437335841 @default.
- W3155731460 cites W1502922572 @default.
- W3155731460 cites W1595797227 @default.
- W3155731460 cites W1693986406 @default.
- W3155731460 cites W1988945200 @default.
- W3155731460 cites W1994352665 @default.
- W3155731460 cites W202805564 @default.
- W3155731460 cites W2051434435 @default.
- W3155731460 cites W2063052942 @default.
- W3155731460 cites W2100218206 @default.
- W3155731460 cites W2111526171 @default.
- W3155731460 cites W2121903617 @default.
- W3155731460 cites W2131241448 @default.
- W3155731460 cites W2131792768 @default.
- W3155731460 cites W2138537392 @default.
- W3155731460 cites W2151604161 @default.
- W3155731460 cites W2155927283 @default.
- W3155731460 cites W2171074980 @default.
- W3155731460 cites W2224807086 @default.
- W3155731460 cites W2409689189 @default.
- W3155731460 cites W2461312660 @default.
- W3155731460 cites W2767602894 @default.
- W3155731460 cites W2793351526 @default.
- W3155731460 cites W2802050029 @default.
- W3155731460 cites W2873705236 @default.
- W3155731460 cites W2889510677 @default.
- W3155731460 cites W2899743487 @default.
- W3155731460 cites W2914196460 @default.
- W3155731460 cites W2951883546 @default.
- W3155731460 cites W2954301664 @default.
- W3155731460 cites W2963110737 @default.
- W3155731460 cites W2963439757 @default.
- W3155731460 cites W2963742654 @default.
- W3155731460 cites W2963805801 @default.
- W3155731460 cites W2963815651 @default.
- W3155731460 cites W2964136676 @default.
- W3155731460 cites W2964690830 @default.
- W3155731460 cites W2969999645 @default.
- W3155731460 cites W3004721943 @default.
- W3155731460 cites W3033015111 @default.
- W3155731460 cites W3038684703 @default.
- W3155731460 cites W3039677769 @default.
- W3155731460 cites W3099283814 @default.
- W3155731460 cites W3099563879 @default.
- W3155731460 cites W3105441357 @default.
- W3155731460 cites W3110827337 @default.
- W3155731460 cites W3110992986 @default.
- W3155731460 cites W3112637905 @default.
- W3155731460 cites W3112667379 @default.
- W3155731460 cites W3113131953 @default.
- W3155731460 cites W3113642175 @default.
- W3155731460 cites W3158465438 @default.
- W3155731460 cites W3206019235 @default.
- W3155731460 cites W770013183 @default.
- W3155731460 hasPublicationYear "2021" @default.
- W3155731460 type Work @default.
- W3155731460 sameAs 3155731460 @default.
- W3155731460 citedByCount "11" @default.
- W3155731460 countsByYear W31557314602020 @default.
- W3155731460 countsByYear W31557314602021 @default.
- W3155731460 crossrefType "posted-content" @default.
- W3155731460 hasAuthorship W3155731460A5005386418 @default.
- W3155731460 hasAuthorship W3155731460A5006360335 @default.
- W3155731460 hasAuthorship W3155731460A5030000580 @default.
- W3155731460 hasAuthorship W3155731460A5037355311 @default.
- W3155731460 hasAuthorship W3155731460A5042358015 @default.
- W3155731460 hasAuthorship W3155731460A5048926641 @default.
- W3155731460 hasAuthorship W3155731460A5054307848 @default.
- W3155731460 hasConcept C10485038 @default.
- W3155731460 hasConcept C11413529 @default.
- W3155731460 hasConcept C119857082 @default.
- W3155731460 hasConcept C12267149 @default.
- W3155731460 hasConcept C126661757 @default.
- W3155731460 hasConcept C154945302 @default.
- W3155731460 hasConcept C177264268 @default.
- W3155731460 hasConcept C199360897 @default.
- W3155731460 hasConcept C2778049539 @default.
- W3155731460 hasConcept C41008148 @default.
- W3155731460 hasConcept C8642999 @default.
- W3155731460 hasConcept C94966114 @default.
- W3155731460 hasConceptScore W3155731460C10485038 @default.
- W3155731460 hasConceptScore W3155731460C11413529 @default.
- W3155731460 hasConceptScore W3155731460C119857082 @default.
- W3155731460 hasConceptScore W3155731460C12267149 @default.
- W3155731460 hasConceptScore W3155731460C126661757 @default.
- W3155731460 hasConceptScore W3155731460C154945302 @default.
- W3155731460 hasConceptScore W3155731460C177264268 @default.
- W3155731460 hasConceptScore W3155731460C199360897 @default.