Matches in SemOpenAlex for { <https://semopenalex.org/work/W3155850903> ?p ?o ?g. }
- W3155850903 abstract "Abstract A sequential process combining laser beam micromachining(LBMM) and micro electro-discharge machining (μEDM) for the micro-drilling purpose was developed to incorporate both methods' benefits. In this sequential process, a guiding hole is produced through LBMM first, followed by μEDM applied to that same hole for more fine machining. This process facilitates a more stable, efficient machining regime with faster processing (compared to pure μEDM) and much better hole quality (compared to LBMMed holes). Studies suggest that strong correlations exist between the various input and output parameters of the sequential process. However, a mathematical model that maps and simultaneously predicts all these output parameters from the input parameters is yet to be developed. Our experimental study observed that the µEDM finishing operation's various output parameters are influenced by the morphological condition of the LBMMed holes. Hence, an artificial neural network(ANN) based dual-stage modelling method was developed to predict the sequential process's outputs. The first stage of the dual-stage model was utilized to predict various LBMM process outputs from different laser input parameters. Furthermore, in the second stage, LBMM predicted outputs (such as pilot hole entry area, exit area, recast layer, and heat affected zone) were used for the final prediction of the sequential process outputs (i.e. machining time by μEDM, machining stability during μEDM in terms of short circuit count and tool wear during μEDM). The model was evaluated based on the average RMSE (Root Mean Square Errors) values for the individual output parameters' complete set data, i.e. μEDM time, short circuit count and tool wear. The values of Average RMSE for the parameters as mentioned earlier were found to be 0.1272(87.28% accuracy), 0.1085(89.15% accuracy), 0.097 (90.3% accuracy), respectively." @default.
- W3155850903 created "2021-04-26" @default.
- W3155850903 creator A5002140794 @default.
- W3155850903 creator A5033709250 @default.
- W3155850903 creator A5033972251 @default.
- W3155850903 creator A5042429584 @default.
- W3155850903 creator A5083864566 @default.
- W3155850903 date "2021-04-07" @default.
- W3155850903 modified "2023-09-26" @default.
- W3155850903 title "Dual-Stage Artificial Neural Network (Ann) Model for Sequential Lbmm-μedm Based Micro Drilling" @default.
- W3155850903 cites W1625060008 @default.
- W3155850903 cites W1975147165 @default.
- W3155850903 cites W1977920973 @default.
- W3155850903 cites W1982346919 @default.
- W3155850903 cites W1990657349 @default.
- W3155850903 cites W1993082523 @default.
- W3155850903 cites W1994671202 @default.
- W3155850903 cites W1995641417 @default.
- W3155850903 cites W2000749630 @default.
- W3155850903 cites W2001276467 @default.
- W3155850903 cites W2008053266 @default.
- W3155850903 cites W2013061105 @default.
- W3155850903 cites W2019990417 @default.
- W3155850903 cites W2046823598 @default.
- W3155850903 cites W2067056587 @default.
- W3155850903 cites W2077932917 @default.
- W3155850903 cites W2078168303 @default.
- W3155850903 cites W2090793145 @default.
- W3155850903 cites W2099540110 @default.
- W3155850903 cites W2126141848 @default.
- W3155850903 cites W2145965838 @default.
- W3155850903 cites W2275633373 @default.
- W3155850903 cites W2294155452 @default.
- W3155850903 cites W2422599173 @default.
- W3155850903 cites W2469852810 @default.
- W3155850903 cites W2521883686 @default.
- W3155850903 cites W2550272513 @default.
- W3155850903 cites W2614103469 @default.
- W3155850903 cites W2616433584 @default.
- W3155850903 cites W2662428394 @default.
- W3155850903 cites W29033028 @default.
- W3155850903 cites W2911952432 @default.
- W3155850903 cites W2913422343 @default.
- W3155850903 cites W2933472516 @default.
- W3155850903 cites W2955996687 @default.
- W3155850903 cites W2963172968 @default.
- W3155850903 cites W3043426275 @default.
- W3155850903 cites W3080153188 @default.
- W3155850903 cites W3101148582 @default.
- W3155850903 cites W3213861709 @default.
- W3155850903 cites W327740369 @default.
- W3155850903 cites W37018364 @default.
- W3155850903 doi "https://doi.org/10.21203/rs.3.rs-385339/v1" @default.
- W3155850903 hasPublicationYear "2021" @default.
- W3155850903 type Work @default.
- W3155850903 sameAs 3155850903 @default.
- W3155850903 citedByCount "1" @default.
- W3155850903 countsByYear W31558509032022 @default.
- W3155850903 crossrefType "posted-content" @default.
- W3155850903 hasAuthorship W3155850903A5002140794 @default.
- W3155850903 hasAuthorship W3155850903A5033709250 @default.
- W3155850903 hasAuthorship W3155850903A5033972251 @default.
- W3155850903 hasAuthorship W3155850903A5042429584 @default.
- W3155850903 hasAuthorship W3155850903A5083864566 @default.
- W3155850903 hasBestOaLocation W31558509031 @default.
- W3155850903 hasConcept C111919701 @default.
- W3155850903 hasConcept C119599485 @default.
- W3155850903 hasConcept C127313418 @default.
- W3155850903 hasConcept C127413603 @default.
- W3155850903 hasConcept C140075996 @default.
- W3155850903 hasConcept C146357865 @default.
- W3155850903 hasConcept C151730666 @default.
- W3155850903 hasConcept C154945302 @default.
- W3155850903 hasConcept C2775924081 @default.
- W3155850903 hasConcept C41008148 @default.
- W3155850903 hasConcept C47446073 @default.
- W3155850903 hasConcept C50644808 @default.
- W3155850903 hasConcept C523214423 @default.
- W3155850903 hasConcept C71907059 @default.
- W3155850903 hasConcept C78519656 @default.
- W3155850903 hasConcept C98045186 @default.
- W3155850903 hasConceptScore W3155850903C111919701 @default.
- W3155850903 hasConceptScore W3155850903C119599485 @default.
- W3155850903 hasConceptScore W3155850903C127313418 @default.
- W3155850903 hasConceptScore W3155850903C127413603 @default.
- W3155850903 hasConceptScore W3155850903C140075996 @default.
- W3155850903 hasConceptScore W3155850903C146357865 @default.
- W3155850903 hasConceptScore W3155850903C151730666 @default.
- W3155850903 hasConceptScore W3155850903C154945302 @default.
- W3155850903 hasConceptScore W3155850903C2775924081 @default.
- W3155850903 hasConceptScore W3155850903C41008148 @default.
- W3155850903 hasConceptScore W3155850903C47446073 @default.
- W3155850903 hasConceptScore W3155850903C50644808 @default.
- W3155850903 hasConceptScore W3155850903C523214423 @default.
- W3155850903 hasConceptScore W3155850903C71907059 @default.
- W3155850903 hasConceptScore W3155850903C78519656 @default.
- W3155850903 hasConceptScore W3155850903C98045186 @default.
- W3155850903 hasLocation W31558509031 @default.
- W3155850903 hasLocation W31558509032 @default.
- W3155850903 hasOpenAccess W3155850903 @default.