Matches in SemOpenAlex for { <https://semopenalex.org/work/W3155870693> ?p ?o ?g. }
- W3155870693 endingPage "60214" @default.
- W3155870693 startingPage "60201" @default.
- W3155870693 abstract "Drone imagery is increasingly used in automated inspection for infrastructure surface defects, especially in hazardous or unreachable environments. In machine vision, the key to crack detection rests with robust and accurate algorithms for image processing. To this end, this paper proposes a deep learning approach using hierarchical convolutional neural networks with feature preservation (HCNNFP) and an intercontrast iterative thresholding algorithm for image binarization. First, a set of branch networks is proposed, wherein the output of previous convolutional blocks is half-sizedly concatenated to the current ones to reduce the obscuration in the down-sampling stage taking into account the overall information loss. Next, to extract the feature map generated from the enhanced HCNN, a binary contrast-based autotuned thresholding (CBAT) approach is developed at the post-processing step, where patterns of interest are clustered within the probability map of the identified features. The proposed technique is then applied to identify surface cracks on the surface of roads, bridges or pavements. An extensive comparison with existing techniques is conducted on various datasets and subject to a number of evaluation criteria including the average F-measure ( <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$AF_beta $ </tex-math></inline-formula> ) introduced here for dynamic quantification of the performance. Experiments on crack images, including those captured by unmanned aerial vehicles inspecting a monorail bridge. The proposed technique outperforms the existing methods on various tested datasets especially for GAPs dataset with an increase of about 1.4% in terms of <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$AF_beta $ </tex-math></inline-formula> while the mean percentage error drops by 2.2%. Such performance demonstrates the merits of the proposed HCNNFP architecture for surface defect inspection." @default.
- W3155870693 created "2021-04-26" @default.
- W3155870693 creator A5004803753 @default.
- W3155870693 creator A5005549803 @default.
- W3155870693 creator A5040769777 @default.
- W3155870693 creator A5069849643 @default.
- W3155870693 date "2021-01-01" @default.
- W3155870693 modified "2023-10-18" @default.
- W3155870693 title "Hierarchical Convolutional Neural Network With Feature Preservation and Autotuned Thresholding for Crack Detection" @default.
- W3155870693 cites W1677182931 @default.
- W3155870693 cites W1969305618 @default.
- W3155870693 cites W1986306729 @default.
- W3155870693 cites W2051084846 @default.
- W3155870693 cites W2090026077 @default.
- W3155870693 cites W2112796928 @default.
- W3155870693 cites W2133059825 @default.
- W3155870693 cites W2171783278 @default.
- W3155870693 cites W2296609147 @default.
- W3155870693 cites W2407692387 @default.
- W3155870693 cites W2511065100 @default.
- W3155870693 cites W2735386636 @default.
- W3155870693 cites W2748643398 @default.
- W3155870693 cites W2765854388 @default.
- W3155870693 cites W2799323087 @default.
- W3155870693 cites W2800343216 @default.
- W3155870693 cites W2883867629 @default.
- W3155870693 cites W2884786778 @default.
- W3155870693 cites W2887092226 @default.
- W3155870693 cites W2899242765 @default.
- W3155870693 cites W2905163589 @default.
- W3155870693 cites W2912350898 @default.
- W3155870693 cites W2912530595 @default.
- W3155870693 cites W2941356554 @default.
- W3155870693 cites W2945897706 @default.
- W3155870693 cites W2953604211 @default.
- W3155870693 cites W2962766617 @default.
- W3155870693 cites W2963058055 @default.
- W3155870693 cites W2963299740 @default.
- W3155870693 cites W2963881378 @default.
- W3155870693 cites W2964052394 @default.
- W3155870693 cites W2964308596 @default.
- W3155870693 cites W2967597237 @default.
- W3155870693 cites W2973830083 @default.
- W3155870693 cites W2979396152 @default.
- W3155870693 cites W2989673213 @default.
- W3155870693 cites W2994615081 @default.
- W3155870693 cites W2998997213 @default.
- W3155870693 cites W3002978252 @default.
- W3155870693 cites W3009428189 @default.
- W3155870693 cites W3040156639 @default.
- W3155870693 cites W3099564553 @default.
- W3155870693 cites W3104979525 @default.
- W3155870693 cites W4239147634 @default.
- W3155870693 cites W4241071816 @default.
- W3155870693 cites W845365781 @default.
- W3155870693 doi "https://doi.org/10.1109/access.2021.3073921" @default.
- W3155870693 hasPublicationYear "2021" @default.
- W3155870693 type Work @default.
- W3155870693 sameAs 3155870693 @default.
- W3155870693 citedByCount "14" @default.
- W3155870693 countsByYear W31558706932022 @default.
- W3155870693 countsByYear W31558706932023 @default.
- W3155870693 crossrefType "journal-article" @default.
- W3155870693 hasAuthorship W3155870693A5004803753 @default.
- W3155870693 hasAuthorship W3155870693A5005549803 @default.
- W3155870693 hasAuthorship W3155870693A5040769777 @default.
- W3155870693 hasAuthorship W3155870693A5069849643 @default.
- W3155870693 hasBestOaLocation W31558706931 @default.
- W3155870693 hasConcept C108583219 @default.
- W3155870693 hasConcept C115961682 @default.
- W3155870693 hasConcept C138885662 @default.
- W3155870693 hasConcept C153180895 @default.
- W3155870693 hasConcept C154945302 @default.
- W3155870693 hasConcept C191178318 @default.
- W3155870693 hasConcept C2776401178 @default.
- W3155870693 hasConcept C31972630 @default.
- W3155870693 hasConcept C41008148 @default.
- W3155870693 hasConcept C41895202 @default.
- W3155870693 hasConcept C52622490 @default.
- W3155870693 hasConcept C81363708 @default.
- W3155870693 hasConceptScore W3155870693C108583219 @default.
- W3155870693 hasConceptScore W3155870693C115961682 @default.
- W3155870693 hasConceptScore W3155870693C138885662 @default.
- W3155870693 hasConceptScore W3155870693C153180895 @default.
- W3155870693 hasConceptScore W3155870693C154945302 @default.
- W3155870693 hasConceptScore W3155870693C191178318 @default.
- W3155870693 hasConceptScore W3155870693C2776401178 @default.
- W3155870693 hasConceptScore W3155870693C31972630 @default.
- W3155870693 hasConceptScore W3155870693C41008148 @default.
- W3155870693 hasConceptScore W3155870693C41895202 @default.
- W3155870693 hasConceptScore W3155870693C52622490 @default.
- W3155870693 hasConceptScore W3155870693C81363708 @default.
- W3155870693 hasLocation W31558706931 @default.
- W3155870693 hasLocation W31558706932 @default.
- W3155870693 hasLocation W31558706933 @default.
- W3155870693 hasLocation W31558706934 @default.
- W3155870693 hasOpenAccess W3155870693 @default.
- W3155870693 hasPrimaryLocation W31558706931 @default.