Matches in SemOpenAlex for { <https://semopenalex.org/work/W3155891128> ?p ?o ?g. }
- W3155891128 endingPage "103962" @default.
- W3155891128 startingPage "103962" @default.
- W3155891128 abstract "With the advances of technology, many new well logs have been acquired over the past decade that carries vital information about the reservoir and subsurface layers. Thus, identifying the most relevant data that can improve the determination and prediction of petrophysical parameters has become very challenging. There has been an increase in the application of machine learning models that can accurately determine the petrophysical parameters of reservoirs, but further studies are still in demand. In this study, enhanced data analytics were used together with the visualisation techniques to pre-process the wireline logs acquired from the Volve field in the North Sea. Descriptive statistical methods were used to understand the relationship between the variables (input and output parameters), followed by applying the Extreme Gradient Boosting (XGBoost) regression model to predict the reservoir permeability and water saturation. A new ensemble model of Random Forest and Lasso Regularisation with an enhanced feature engineering technique was then proposed to improve the accuracy of the results. It appeared that the proposed ensemble model has a better performance than the traditional XGBoost and the hybrid PCA-XGBoost models in terms of precision, consistency and accuracy. The immense potential of ensemble modelling to enhance reservoir characterisation has been demonstrated by the success of this research." @default.
- W3155891128 created "2021-04-26" @default.
- W3155891128 creator A5008349940 @default.
- W3155891128 creator A5054946215 @default.
- W3155891128 creator A5072276761 @default.
- W3155891128 creator A5088637964 @default.
- W3155891128 date "2021-07-01" @default.
- W3155891128 modified "2023-10-01" @default.
- W3155891128 title "A novel custom ensemble learning model for an improved reservoir permeability and water saturation prediction" @default.
- W3155891128 cites W1987380161 @default.
- W3155891128 cites W2031360841 @default.
- W3155891128 cites W2042095236 @default.
- W3155891128 cites W2052472384 @default.
- W3155891128 cites W2070230130 @default.
- W3155891128 cites W2087452412 @default.
- W3155891128 cites W2099528333 @default.
- W3155891128 cites W2102805256 @default.
- W3155891128 cites W2119606266 @default.
- W3155891128 cites W2128908398 @default.
- W3155891128 cites W2138153039 @default.
- W3155891128 cites W2143481518 @default.
- W3155891128 cites W2471840424 @default.
- W3155891128 cites W2597524559 @default.
- W3155891128 cites W2626176756 @default.
- W3155891128 cites W2629464472 @default.
- W3155891128 cites W2789433970 @default.
- W3155891128 cites W2807838313 @default.
- W3155891128 cites W2809495187 @default.
- W3155891128 cites W2897229585 @default.
- W3155891128 cites W2911964244 @default.
- W3155891128 cites W2948009788 @default.
- W3155891128 cites W2962738378 @default.
- W3155891128 cites W2988237773 @default.
- W3155891128 cites W3011098157 @default.
- W3155891128 cites W3013454794 @default.
- W3155891128 cites W3047993641 @default.
- W3155891128 cites W3083205481 @default.
- W3155891128 cites W3094808134 @default.
- W3155891128 cites W3106860847 @default.
- W3155891128 doi "https://doi.org/10.1016/j.jngse.2021.103962" @default.
- W3155891128 hasPublicationYear "2021" @default.
- W3155891128 type Work @default.
- W3155891128 sameAs 3155891128 @default.
- W3155891128 citedByCount "22" @default.
- W3155891128 countsByYear W31558911282021 @default.
- W3155891128 countsByYear W31558911282022 @default.
- W3155891128 countsByYear W31558911282023 @default.
- W3155891128 crossrefType "journal-article" @default.
- W3155891128 hasAuthorship W3155891128A5008349940 @default.
- W3155891128 hasAuthorship W3155891128A5054946215 @default.
- W3155891128 hasAuthorship W3155891128A5072276761 @default.
- W3155891128 hasAuthorship W3155891128A5088637964 @default.
- W3155891128 hasConcept C105795698 @default.
- W3155891128 hasConcept C106192678 @default.
- W3155891128 hasConcept C119857082 @default.
- W3155891128 hasConcept C119898033 @default.
- W3155891128 hasConcept C124101348 @default.
- W3155891128 hasConcept C127313418 @default.
- W3155891128 hasConcept C127413603 @default.
- W3155891128 hasConcept C14641988 @default.
- W3155891128 hasConcept C151730666 @default.
- W3155891128 hasConcept C154945302 @default.
- W3155891128 hasConcept C169258074 @default.
- W3155891128 hasConcept C183250156 @default.
- W3155891128 hasConcept C187320778 @default.
- W3155891128 hasConcept C2776951270 @default.
- W3155891128 hasConcept C2778668878 @default.
- W3155891128 hasConcept C33923547 @default.
- W3155891128 hasConcept C35817400 @default.
- W3155891128 hasConcept C41008148 @default.
- W3155891128 hasConcept C45942800 @default.
- W3155891128 hasConcept C46293882 @default.
- W3155891128 hasConcept C46686674 @default.
- W3155891128 hasConcept C548895740 @default.
- W3155891128 hasConcept C555944384 @default.
- W3155891128 hasConcept C6648577 @default.
- W3155891128 hasConcept C70153297 @default.
- W3155891128 hasConcept C76155785 @default.
- W3155891128 hasConcept C78762247 @default.
- W3155891128 hasConceptScore W3155891128C105795698 @default.
- W3155891128 hasConceptScore W3155891128C106192678 @default.
- W3155891128 hasConceptScore W3155891128C119857082 @default.
- W3155891128 hasConceptScore W3155891128C119898033 @default.
- W3155891128 hasConceptScore W3155891128C124101348 @default.
- W3155891128 hasConceptScore W3155891128C127313418 @default.
- W3155891128 hasConceptScore W3155891128C127413603 @default.
- W3155891128 hasConceptScore W3155891128C14641988 @default.
- W3155891128 hasConceptScore W3155891128C151730666 @default.
- W3155891128 hasConceptScore W3155891128C154945302 @default.
- W3155891128 hasConceptScore W3155891128C169258074 @default.
- W3155891128 hasConceptScore W3155891128C183250156 @default.
- W3155891128 hasConceptScore W3155891128C187320778 @default.
- W3155891128 hasConceptScore W3155891128C2776951270 @default.
- W3155891128 hasConceptScore W3155891128C2778668878 @default.
- W3155891128 hasConceptScore W3155891128C33923547 @default.
- W3155891128 hasConceptScore W3155891128C35817400 @default.
- W3155891128 hasConceptScore W3155891128C41008148 @default.
- W3155891128 hasConceptScore W3155891128C45942800 @default.