Matches in SemOpenAlex for { <https://semopenalex.org/work/W3155976787> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W3155976787 endingPage "107148" @default.
- W3155976787 startingPage "107148" @default.
- W3155976787 abstract "The fundamental challenge of data analytics scheduling is the heterogeneity of both data analytics jobs and resources. Although many scheduling solutions have been developed to improve the efficiency of data analytics frameworks (e.g., Spark), they either (1) focus on the scheduling of a single type of resource, without considering the coordination between different resources; or (2) schedule multiple resources by factoring in limited information about analytics jobs without considering the heterogeneity of resources. This paper presents Stargazer, a novel, efficient system that tackles diversity data analytics jobs on heterogeneous cluster by inferring the completion times of their decomposed tasks. Specifically, Stargazer adopts a deep learning model, which takes into considerations multiple key factors of diversity data analytics jobs and heterogeneous resources, to accurately infer the completion time of different tasks. A prototype of Stargazer is fully implemented in the Spark framework. Extensive experiments show that Stargazer can reduce the average job completion time by 21% and improve average performance by 20%, while incurring little overhead." @default.
- W3155976787 created "2021-04-26" @default.
- W3155976787 creator A5033233243 @default.
- W3155976787 creator A5056209905 @default.
- W3155976787 date "2021-06-01" @default.
- W3155976787 modified "2023-09-27" @default.
- W3155976787 title "Introduction to the special section on deep learning-based intelligent systems (VSI-dlis)" @default.
- W3155976787 cites W3015685049 @default.
- W3155976787 cites W3082571454 @default.
- W3155976787 cites W3126456772 @default.
- W3155976787 cites W3135964818 @default.
- W3155976787 cites W3136339873 @default.
- W3155976787 cites W3137734413 @default.
- W3155976787 cites W3139497011 @default.
- W3155976787 cites W3139833337 @default.
- W3155976787 cites W3141565715 @default.
- W3155976787 cites W3142513670 @default.
- W3155976787 cites W3143959341 @default.
- W3155976787 cites W3147161653 @default.
- W3155976787 cites W3149795680 @default.
- W3155976787 cites W3152195435 @default.
- W3155976787 cites W3152783047 @default.
- W3155976787 cites W3153200530 @default.
- W3155976787 doi "https://doi.org/10.1016/j.compeleceng.2021.107148" @default.
- W3155976787 hasPublicationYear "2021" @default.
- W3155976787 type Work @default.
- W3155976787 sameAs 3155976787 @default.
- W3155976787 citedByCount "1" @default.
- W3155976787 countsByYear W31559767872023 @default.
- W3155976787 crossrefType "journal-article" @default.
- W3155976787 hasAuthorship W3155976787A5033233243 @default.
- W3155976787 hasAuthorship W3155976787A5056209905 @default.
- W3155976787 hasConcept C111919701 @default.
- W3155976787 hasConcept C120314980 @default.
- W3155976787 hasConcept C124101348 @default.
- W3155976787 hasConcept C127413603 @default.
- W3155976787 hasConcept C175801342 @default.
- W3155976787 hasConcept C199360897 @default.
- W3155976787 hasConcept C206729178 @default.
- W3155976787 hasConcept C21547014 @default.
- W3155976787 hasConcept C2522767166 @default.
- W3155976787 hasConcept C2781215313 @default.
- W3155976787 hasConcept C41008148 @default.
- W3155976787 hasConcept C68387754 @default.
- W3155976787 hasConcept C75684735 @default.
- W3155976787 hasConcept C79158427 @default.
- W3155976787 hasConceptScore W3155976787C111919701 @default.
- W3155976787 hasConceptScore W3155976787C120314980 @default.
- W3155976787 hasConceptScore W3155976787C124101348 @default.
- W3155976787 hasConceptScore W3155976787C127413603 @default.
- W3155976787 hasConceptScore W3155976787C175801342 @default.
- W3155976787 hasConceptScore W3155976787C199360897 @default.
- W3155976787 hasConceptScore W3155976787C206729178 @default.
- W3155976787 hasConceptScore W3155976787C21547014 @default.
- W3155976787 hasConceptScore W3155976787C2522767166 @default.
- W3155976787 hasConceptScore W3155976787C2781215313 @default.
- W3155976787 hasConceptScore W3155976787C41008148 @default.
- W3155976787 hasConceptScore W3155976787C68387754 @default.
- W3155976787 hasConceptScore W3155976787C75684735 @default.
- W3155976787 hasConceptScore W3155976787C79158427 @default.
- W3155976787 hasLocation W31559767871 @default.
- W3155976787 hasOpenAccess W3155976787 @default.
- W3155976787 hasPrimaryLocation W31559767871 @default.
- W3155976787 hasRelatedWork W2499073664 @default.
- W3155976787 hasRelatedWork W2752106475 @default.
- W3155976787 hasRelatedWork W2767582127 @default.
- W3155976787 hasRelatedWork W2769430831 @default.
- W3155976787 hasRelatedWork W3007959775 @default.
- W3155976787 hasRelatedWork W3109375702 @default.
- W3155976787 hasRelatedWork W3142038251 @default.
- W3155976787 hasRelatedWork W3177086633 @default.
- W3155976787 hasRelatedWork W4226411239 @default.
- W3155976787 hasRelatedWork W2737833832 @default.
- W3155976787 hasVolume "92" @default.
- W3155976787 isParatext "false" @default.
- W3155976787 isRetracted "false" @default.
- W3155976787 magId "3155976787" @default.
- W3155976787 workType "article" @default.