Matches in SemOpenAlex for { <https://semopenalex.org/work/W3156004501> ?p ?o ?g. }
- W3156004501 abstract "Encapsulation of single microbial cells by surface-engineered shells has great potential for the protection of yeasts and bacteria against harsh environmental conditions, such as elevated temperatures, UV light, extreme pH values, and antimicrobials. Encapsulation with functionalized shells can also alter the surface characteristics of cells in a way that can make them more suitable to perform their function in complex environments, including bio-reactors, bio-fuel production, biosensors, and the human body. Surface-engineered shells bear as an advantage above genetically-engineered microorganisms that the protection and functionalization added are temporary and disappear upon microbial growth, ultimately breaking a shell. Therewith, the danger of creating a “super-bug,” resistant to all known antimicrobial measures does not exist for surface-engineered shells. Encapsulating shells around single microorganisms are predominantly characterized by electron microscopy, energy-dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, particulate micro-electrophoresis, nitrogen adsorption-desorption isotherms, and X-ray diffraction. It is amazing that X-ray Photoelectron Spectroscopy (XPS) is forgotten as a method to characterize encapsulated yeasts and bacteria. XPS was introduced several decades ago to characterize the elemental composition of microbial cell surfaces. Microbial sample preparation requires freeze-drying which leaves microorganisms intact. Freeze-dried microorganisms form a powder that can be easily pressed in small cups, suitable for insertion in the high vacuum of an XPS machine and obtaining high resolution spectra. Typically, XPS measures carbon, nitrogen, oxygen and phosphorus as the most common elements in microbial cell surfaces. Models exist to transform these compositions into well-known, biochemical cell surface components, including proteins, polysaccharides, chitin, glucan, teichoic acid, peptidoglycan, and hydrocarbon like components. Moreover, elemental surface compositions of many different microbial strains and species in freeze-dried conditions, related with zeta potentials of microbial cells, measured in a hydrated state. Relationships between elemental surface compositions measured using XPS in vacuum with characteristics measured in a hydrated state have been taken as a validation of microbial cell surface XPS. Despite the merits of microbial cell surface XPS, XPS has seldom been applied to characterize the many different types of surface-engineered shells around yeasts and bacteria currently described in the literature. In this review, we aim to advocate the use of XPS as a forgotten method for microbial cell surface characterization, for use on surface-engineered shells encapsulating microorganisms." @default.
- W3156004501 created "2021-04-26" @default.
- W3156004501 creator A5002353006 @default.
- W3156004501 creator A5036422165 @default.
- W3156004501 creator A5047737595 @default.
- W3156004501 creator A5065275359 @default.
- W3156004501 date "2021-04-22" @default.
- W3156004501 modified "2023-10-16" @default.
- W3156004501 title "X-Ray Photoelectron Spectroscopy on Microbial Cell Surfaces: A Forgotten Method for the Characterization of Microorganisms Encapsulated With Surface-Engineered Shells" @default.
- W3156004501 cites W1812339232 @default.
- W3156004501 cites W1940310134 @default.
- W3156004501 cites W1964548104 @default.
- W3156004501 cites W1967652094 @default.
- W3156004501 cites W1972786752 @default.
- W3156004501 cites W1974620730 @default.
- W3156004501 cites W1977925059 @default.
- W3156004501 cites W1982029015 @default.
- W3156004501 cites W1984470294 @default.
- W3156004501 cites W1994405776 @default.
- W3156004501 cites W1999128983 @default.
- W3156004501 cites W1999869472 @default.
- W3156004501 cites W2009036982 @default.
- W3156004501 cites W2013257613 @default.
- W3156004501 cites W2013824389 @default.
- W3156004501 cites W2024874504 @default.
- W3156004501 cites W2043659487 @default.
- W3156004501 cites W2044506380 @default.
- W3156004501 cites W2046281411 @default.
- W3156004501 cites W2055470971 @default.
- W3156004501 cites W2057072415 @default.
- W3156004501 cites W2059338315 @default.
- W3156004501 cites W2063323913 @default.
- W3156004501 cites W2066431616 @default.
- W3156004501 cites W2069350458 @default.
- W3156004501 cites W2069822501 @default.
- W3156004501 cites W2081926265 @default.
- W3156004501 cites W2082658863 @default.
- W3156004501 cites W2084833460 @default.
- W3156004501 cites W2085776732 @default.
- W3156004501 cites W2087135747 @default.
- W3156004501 cites W2095402751 @default.
- W3156004501 cites W2096240591 @default.
- W3156004501 cites W2101782563 @default.
- W3156004501 cites W2102518934 @default.
- W3156004501 cites W2105907918 @default.
- W3156004501 cites W2111883804 @default.
- W3156004501 cites W2112081188 @default.
- W3156004501 cites W2113512602 @default.
- W3156004501 cites W2116715183 @default.
- W3156004501 cites W2120556801 @default.
- W3156004501 cites W2129708328 @default.
- W3156004501 cites W2132130047 @default.
- W3156004501 cites W2136756060 @default.
- W3156004501 cites W2142631133 @default.
- W3156004501 cites W2142725722 @default.
- W3156004501 cites W2149682859 @default.
- W3156004501 cites W2169540199 @default.
- W3156004501 cites W2171916657 @default.
- W3156004501 cites W2317756307 @default.
- W3156004501 cites W2321567459 @default.
- W3156004501 cites W2327015358 @default.
- W3156004501 cites W2331617807 @default.
- W3156004501 cites W2335403235 @default.
- W3156004501 cites W2464442645 @default.
- W3156004501 cites W2520762804 @default.
- W3156004501 cites W2545704393 @default.
- W3156004501 cites W2566330340 @default.
- W3156004501 cites W2753630838 @default.
- W3156004501 cites W2800854076 @default.
- W3156004501 cites W2863476023 @default.
- W3156004501 cites W2884682463 @default.
- W3156004501 cites W2893651362 @default.
- W3156004501 cites W2896819091 @default.
- W3156004501 cites W2913405886 @default.
- W3156004501 cites W2937445603 @default.
- W3156004501 cites W2952985323 @default.
- W3156004501 cites W2993595686 @default.
- W3156004501 cites W3022172451 @default.
- W3156004501 cites W3090306267 @default.
- W3156004501 cites W3142601306 @default.
- W3156004501 cites W4234179958 @default.
- W3156004501 cites W4235632302 @default.
- W3156004501 doi "https://doi.org/10.3389/fchem.2021.666159" @default.
- W3156004501 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8100684" @default.
- W3156004501 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33968904" @default.
- W3156004501 hasPublicationYear "2021" @default.
- W3156004501 type Work @default.
- W3156004501 sameAs 3156004501 @default.
- W3156004501 citedByCount "10" @default.
- W3156004501 countsByYear W31560045012021 @default.
- W3156004501 countsByYear W31560045012022 @default.
- W3156004501 countsByYear W31560045012023 @default.
- W3156004501 crossrefType "journal-article" @default.
- W3156004501 hasAuthorship W3156004501A5002353006 @default.
- W3156004501 hasAuthorship W3156004501A5036422165 @default.
- W3156004501 hasAuthorship W3156004501A5047737595 @default.
- W3156004501 hasAuthorship W3156004501A5065275359 @default.
- W3156004501 hasBestOaLocation W31560045011 @default.
- W3156004501 hasConcept C127413603 @default.
- W3156004501 hasConcept C147789679 @default.