Matches in SemOpenAlex for { <https://semopenalex.org/work/W3156045864> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W3156045864 abstract "This paper presents an approach to develop an affordable and easy-to-use electrocardiogram (ECG) monitoring device for early and timely detection of various cardiovascular diseases which would help in reducing the mortality rate of heart disease patients. Further, we present two different approaches to classify the signal into five different cardiac arrhythmia diseases as stated by the AAMI EC57 standard and compare their performance. The device comprises of an Arduino Uno and AD8232 heart rate monitor to record ECG and store it digitally on a computer. A three-lead based ECG electrode system is employed instead of the conventional twelve-lead based as it is cheaper and simpler to use. The preprocessing of the ECG signal such as filtering and QRS complex detection is done digitally using python. In the past few years, the neural network has established itself as a very powerful machine learning algorithm and has seen exponential growth in the field of biomedical signal and image analysis. Here, the performance and behavior of two different types of neural networks are evaluated, namely deep convolutional neural network (CNN) and feedforward neural network (FFNN) on the famous PhysioNet MIT-BIH Arrhythmia Database in classifying cardiac arrhythmia. Consequently, the prediction accuracy of 94.72 and 89.82% is achieved with CNN and FFNN respectively." @default.
- W3156045864 created "2021-04-26" @default.
- W3156045864 creator A5035006104 @default.
- W3156045864 creator A5036337993 @default.
- W3156045864 creator A5045463867 @default.
- W3156045864 creator A5056843687 @default.
- W3156045864 creator A5088308437 @default.
- W3156045864 date "2021-01-01" @default.
- W3156045864 modified "2023-09-25" @default.
- W3156045864 title "Development of a Low-Cost ECG Device" @default.
- W3156045864 cites W1989156452 @default.
- W3156045864 cites W2095409369 @default.
- W3156045864 cites W2105119992 @default.
- W3156045864 cites W2180748755 @default.
- W3156045864 cites W2194775991 @default.
- W3156045864 cites W2321042562 @default.
- W3156045864 cites W2760529574 @default.
- W3156045864 cites W2779046742 @default.
- W3156045864 cites W2982318278 @default.
- W3156045864 cites W3099743694 @default.
- W3156045864 cites W3106455851 @default.
- W3156045864 doi "https://doi.org/10.1007/978-981-33-4893-6_35" @default.
- W3156045864 hasPublicationYear "2021" @default.
- W3156045864 type Work @default.
- W3156045864 sameAs 3156045864 @default.
- W3156045864 citedByCount "0" @default.
- W3156045864 crossrefType "book-chapter" @default.
- W3156045864 hasAuthorship W3156045864A5035006104 @default.
- W3156045864 hasAuthorship W3156045864A5036337993 @default.
- W3156045864 hasAuthorship W3156045864A5045463867 @default.
- W3156045864 hasAuthorship W3156045864A5056843687 @default.
- W3156045864 hasAuthorship W3156045864A5088308437 @default.
- W3156045864 hasConcept C108583219 @default.
- W3156045864 hasConcept C111773187 @default.
- W3156045864 hasConcept C127413603 @default.
- W3156045864 hasConcept C133731056 @default.
- W3156045864 hasConcept C153180895 @default.
- W3156045864 hasConcept C154945302 @default.
- W3156045864 hasConcept C164705383 @default.
- W3156045864 hasConcept C2779161974 @default.
- W3156045864 hasConcept C2988455589 @default.
- W3156045864 hasConcept C34736171 @default.
- W3156045864 hasConcept C38858127 @default.
- W3156045864 hasConcept C41008148 @default.
- W3156045864 hasConcept C47702885 @default.
- W3156045864 hasConcept C50644808 @default.
- W3156045864 hasConcept C71924100 @default.
- W3156045864 hasConcept C81363708 @default.
- W3156045864 hasConceptScore W3156045864C108583219 @default.
- W3156045864 hasConceptScore W3156045864C111773187 @default.
- W3156045864 hasConceptScore W3156045864C127413603 @default.
- W3156045864 hasConceptScore W3156045864C133731056 @default.
- W3156045864 hasConceptScore W3156045864C153180895 @default.
- W3156045864 hasConceptScore W3156045864C154945302 @default.
- W3156045864 hasConceptScore W3156045864C164705383 @default.
- W3156045864 hasConceptScore W3156045864C2779161974 @default.
- W3156045864 hasConceptScore W3156045864C2988455589 @default.
- W3156045864 hasConceptScore W3156045864C34736171 @default.
- W3156045864 hasConceptScore W3156045864C38858127 @default.
- W3156045864 hasConceptScore W3156045864C41008148 @default.
- W3156045864 hasConceptScore W3156045864C47702885 @default.
- W3156045864 hasConceptScore W3156045864C50644808 @default.
- W3156045864 hasConceptScore W3156045864C71924100 @default.
- W3156045864 hasConceptScore W3156045864C81363708 @default.
- W3156045864 hasLocation W31560458641 @default.
- W3156045864 hasOpenAccess W3156045864 @default.
- W3156045864 hasPrimaryLocation W31560458641 @default.
- W3156045864 hasRelatedWork W11765363 @default.
- W3156045864 hasRelatedWork W1407330 @default.
- W3156045864 hasRelatedWork W14579021 @default.
- W3156045864 hasRelatedWork W21705 @default.
- W3156045864 hasRelatedWork W3506425 @default.
- W3156045864 hasRelatedWork W3657516 @default.
- W3156045864 hasRelatedWork W5473700 @default.
- W3156045864 hasRelatedWork W7626849 @default.
- W3156045864 hasRelatedWork W9190101 @default.
- W3156045864 hasRelatedWork W9711757 @default.
- W3156045864 isParatext "false" @default.
- W3156045864 isRetracted "false" @default.
- W3156045864 magId "3156045864" @default.
- W3156045864 workType "book-chapter" @default.