Matches in SemOpenAlex for { <https://semopenalex.org/work/W3156082978> ?p ?o ?g. }
- W3156082978 abstract "Meteorological conditions are the main driving variables for mycotoxin-producing fungi and the resulting contamination in maize grain, but the cropping system used can mitigate this weather impact considerably. Several researchers have investigated cropping operations' role in mycotoxin contamination, but these findings were inconclusive, precluding their use in predictive modeling. In this study a machine learning (ML) approach was considered, which included weather-based mechanistic model predictions for AFLA-maize and FER-maize [predicting aflatoxin B1 (AFB1) and fumonisins (FBs), respectively], and cropping system factors as the input variables. The occurrence of AFB1 and FBs in maize fields was recorded, and their corresponding cropping system data collected, over the years 2005-2018 in northern Italy. Two deep neural network (DNN) models were trained to predict, at harvest, which maize fields were contaminated beyond the legal limit with AFB1 and FBs. Both models reached an accuracy >75% demonstrating the ML approach added value with respect to classical statistical approaches (i.e., simple or multiple linear regression models). The improved predictive performance compared with that obtained for AFLA-maize and FER-maize was clearly demonstrated. This coupled to the large data set used, comprising a 13-year time series, and the good results for the statistical scores applied, together confirmed the robustness of the models developed here." @default.
- W3156082978 created "2021-04-26" @default.
- W3156082978 creator A5000502286 @default.
- W3156082978 creator A5042339096 @default.
- W3156082978 creator A5054943286 @default.
- W3156082978 date "2021-04-09" @default.
- W3156082978 modified "2023-10-15" @default.
- W3156082978 title "Machine Learning for Predicting Mycotoxin Occurrence in Maize" @default.
- W3156082978 cites W1586750592 @default.
- W3156082978 cites W1603683844 @default.
- W3156082978 cites W1963987210 @default.
- W3156082978 cites W1965519572 @default.
- W3156082978 cites W1968359891 @default.
- W3156082978 cites W1982919861 @default.
- W3156082978 cites W2000359198 @default.
- W3156082978 cites W2002833978 @default.
- W3156082978 cites W2009145167 @default.
- W3156082978 cites W2019225543 @default.
- W3156082978 cites W2021498729 @default.
- W3156082978 cites W2028449032 @default.
- W3156082978 cites W2035424729 @default.
- W3156082978 cites W2047845111 @default.
- W3156082978 cites W2062227835 @default.
- W3156082978 cites W2064034166 @default.
- W3156082978 cites W2064606988 @default.
- W3156082978 cites W2074415042 @default.
- W3156082978 cites W2076428283 @default.
- W3156082978 cites W2098127765 @default.
- W3156082978 cites W2105051796 @default.
- W3156082978 cites W2109553965 @default.
- W3156082978 cites W2119160966 @default.
- W3156082978 cites W2120022082 @default.
- W3156082978 cites W2123876430 @default.
- W3156082978 cites W2131824501 @default.
- W3156082978 cites W2138178898 @default.
- W3156082978 cites W2155653793 @default.
- W3156082978 cites W2323817428 @default.
- W3156082978 cites W2335786924 @default.
- W3156082978 cites W2473936315 @default.
- W3156082978 cites W2510197168 @default.
- W3156082978 cites W2587466508 @default.
- W3156082978 cites W2620760558 @default.
- W3156082978 cites W2792174401 @default.
- W3156082978 cites W2885770726 @default.
- W3156082978 cites W2888529542 @default.
- W3156082978 cites W2909125467 @default.
- W3156082978 cites W2911358418 @default.
- W3156082978 cites W2919115771 @default.
- W3156082978 cites W2919930457 @default.
- W3156082978 cites W2953686964 @default.
- W3156082978 cites W2954612666 @default.
- W3156082978 cites W2955365692 @default.
- W3156082978 cites W2972225545 @default.
- W3156082978 cites W2988174087 @default.
- W3156082978 cites W2991487186 @default.
- W3156082978 cites W3020885311 @default.
- W3156082978 cites W3085720836 @default.
- W3156082978 cites W3097492344 @default.
- W3156082978 cites W3098019734 @default.
- W3156082978 cites W3103444592 @default.
- W3156082978 cites W4251036056 @default.
- W3156082978 cites W4256643584 @default.
- W3156082978 cites W4384482499 @default.
- W3156082978 doi "https://doi.org/10.3389/fmicb.2021.661132" @default.
- W3156082978 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8062859" @default.
- W3156082978 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33897675" @default.
- W3156082978 hasPublicationYear "2021" @default.
- W3156082978 type Work @default.
- W3156082978 sameAs 3156082978 @default.
- W3156082978 citedByCount "10" @default.
- W3156082978 countsByYear W31560829782021 @default.
- W3156082978 countsByYear W31560829782022 @default.
- W3156082978 countsByYear W31560829782023 @default.
- W3156082978 crossrefType "journal-article" @default.
- W3156082978 hasAuthorship W3156082978A5000502286 @default.
- W3156082978 hasAuthorship W3156082978A5042339096 @default.
- W3156082978 hasAuthorship W3156082978A5054943286 @default.
- W3156082978 hasBestOaLocation W31560829781 @default.
- W3156082978 hasConcept C104317684 @default.
- W3156082978 hasConcept C105795698 @default.
- W3156082978 hasConcept C112570922 @default.
- W3156082978 hasConcept C118518473 @default.
- W3156082978 hasConcept C119857082 @default.
- W3156082978 hasConcept C127413603 @default.
- W3156082978 hasConcept C13558536 @default.
- W3156082978 hasConcept C137580998 @default.
- W3156082978 hasConcept C150903083 @default.
- W3156082978 hasConcept C152877465 @default.
- W3156082978 hasConcept C18903297 @default.
- W3156082978 hasConcept C2776394811 @default.
- W3156082978 hasConcept C33923547 @default.
- W3156082978 hasConcept C39432304 @default.
- W3156082978 hasConcept C40758303 @default.
- W3156082978 hasConcept C41008148 @default.
- W3156082978 hasConcept C48921125 @default.
- W3156082978 hasConcept C50644808 @default.
- W3156082978 hasConcept C55493867 @default.
- W3156082978 hasConcept C63479239 @default.
- W3156082978 hasConcept C6557445 @default.
- W3156082978 hasConcept C84699730 @default.