Matches in SemOpenAlex for { <https://semopenalex.org/work/W3156111502> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W3156111502 abstract "Nowadays, many machine learning procedures are available on the shelves and may be used easily to calibrate predictive models on supervised data. However, when the input data consists of more than one unknown cluster, linked to different underlying predictive models, fitting a model is a more challenging task. We propose, in this paper, a three-step procedure to automatically solve this problem. The first step aims at catching the clustering structure of the input data, which may be characterized by several statistical distributions. For each partition, the second step fits a specific predictive model based on the data in each cluster. The overall model is computed by a consensual aggregation of the models corresponding to the different partitions. A comparison of the performances on different simulated and real data assesses the excellent performance of our method in a large variety of prediction problems." @default.
- W3156111502 created "2021-04-26" @default.
- W3156111502 creator A5023523529 @default.
- W3156111502 creator A5043293860 @default.
- W3156111502 creator A5046610403 @default.
- W3156111502 date "2021-04-10" @default.
- W3156111502 modified "2023-10-03" @default.
- W3156111502 title "KFC: A clusterwise supervised learning procedure based on the aggregation of distances" @default.
- W3156111502 cites W138682821 @default.
- W3156111502 cites W1567180517 @default.
- W3156111502 cites W1570093865 @default.
- W3156111502 cites W2009247956 @default.
- W3156111502 cites W2011430131 @default.
- W3156111502 cites W2012935697 @default.
- W3156111502 cites W2055032487 @default.
- W3156111502 cites W2062772460 @default.
- W3156111502 cites W2083279581 @default.
- W3156111502 cites W2090232667 @default.
- W3156111502 cites W2112818627 @default.
- W3156111502 cites W2130700086 @default.
- W3156111502 cites W2150593711 @default.
- W3156111502 cites W2164568552 @default.
- W3156111502 cites W2478345259 @default.
- W3156111502 cites W2621635773 @default.
- W3156111502 cites W28412257 @default.
- W3156111502 cites W2963979365 @default.
- W3156111502 cites W4240294902 @default.
- W3156111502 doi "https://doi.org/10.1080/00949655.2021.1891539" @default.
- W3156111502 hasPublicationYear "2021" @default.
- W3156111502 type Work @default.
- W3156111502 sameAs 3156111502 @default.
- W3156111502 citedByCount "0" @default.
- W3156111502 crossrefType "journal-article" @default.
- W3156111502 hasAuthorship W3156111502A5023523529 @default.
- W3156111502 hasAuthorship W3156111502A5043293860 @default.
- W3156111502 hasAuthorship W3156111502A5046610403 @default.
- W3156111502 hasConcept C114614502 @default.
- W3156111502 hasConcept C119857082 @default.
- W3156111502 hasConcept C124101348 @default.
- W3156111502 hasConcept C127413603 @default.
- W3156111502 hasConcept C136389625 @default.
- W3156111502 hasConcept C154945302 @default.
- W3156111502 hasConcept C164866538 @default.
- W3156111502 hasConcept C199360897 @default.
- W3156111502 hasConcept C201995342 @default.
- W3156111502 hasConcept C2780451532 @default.
- W3156111502 hasConcept C33923547 @default.
- W3156111502 hasConcept C41008148 @default.
- W3156111502 hasConcept C42812 @default.
- W3156111502 hasConcept C50644808 @default.
- W3156111502 hasConcept C73555534 @default.
- W3156111502 hasConceptScore W3156111502C114614502 @default.
- W3156111502 hasConceptScore W3156111502C119857082 @default.
- W3156111502 hasConceptScore W3156111502C124101348 @default.
- W3156111502 hasConceptScore W3156111502C127413603 @default.
- W3156111502 hasConceptScore W3156111502C136389625 @default.
- W3156111502 hasConceptScore W3156111502C154945302 @default.
- W3156111502 hasConceptScore W3156111502C164866538 @default.
- W3156111502 hasConceptScore W3156111502C199360897 @default.
- W3156111502 hasConceptScore W3156111502C201995342 @default.
- W3156111502 hasConceptScore W3156111502C2780451532 @default.
- W3156111502 hasConceptScore W3156111502C33923547 @default.
- W3156111502 hasConceptScore W3156111502C41008148 @default.
- W3156111502 hasConceptScore W3156111502C42812 @default.
- W3156111502 hasConceptScore W3156111502C50644808 @default.
- W3156111502 hasConceptScore W3156111502C73555534 @default.
- W3156111502 hasLocation W31561115021 @default.
- W3156111502 hasOpenAccess W3156111502 @default.
- W3156111502 hasPrimaryLocation W31561115021 @default.
- W3156111502 hasRelatedWork W10356211 @default.
- W3156111502 hasRelatedWork W11219696 @default.
- W3156111502 hasRelatedWork W2124813 @default.
- W3156111502 hasRelatedWork W3383526 @default.
- W3156111502 hasRelatedWork W5006466 @default.
- W3156111502 hasRelatedWork W5839721 @default.
- W3156111502 hasRelatedWork W845024 @default.
- W3156111502 hasRelatedWork W9769132 @default.
- W3156111502 hasRelatedWork W9863685 @default.
- W3156111502 hasRelatedWork W11830398 @default.
- W3156111502 isParatext "false" @default.
- W3156111502 isRetracted "false" @default.
- W3156111502 magId "3156111502" @default.
- W3156111502 workType "article" @default.