Matches in SemOpenAlex for { <https://semopenalex.org/work/W3156130124> ?p ?o ?g. }
- W3156130124 endingPage "858" @default.
- W3156130124 startingPage "845" @default.
- W3156130124 abstract "// Jared Mamrot 1 , 2 , Nathan E. Hall 1 and Robyn A. Lindley 1 , 3 1 GMDx Group Ltd, Melbourne, Victoria, Australia 2 Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia 3 Department of Clinical Pathology, The Victorian Comprehensive Cancer Centre, Faculty of Medicine, Dentistry & Health Sciences, University of Melbourne, VIC, Australia Correspondence to: Jared Mamrot, email: jared.mamrot@gmdxgen.com Keywords: innate immunity; biomarker; mutagenesis; oncogenesis; cancer progression Received: November 05, 2020 Accepted: March 22, 2021 Published: April 13, 2021 Copyright: © 2021 Mamrot et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT Somatic mutation signatures are an informative facet of cancer aetiology, however they are rarely useful for predicting patient outcome. The aim of this study is to evaluate the utility of a panel of 142 mutation-signature–associated metrics (P142) for predicting cancer progression in patients from a ‘TCGA PanCancer Atlas’ cohort. The P142 metrics are comprised of AID/APOBEC and ADAR deaminase associated SNVs analyzed for codon context, strand bias, and transitions/transversions. TCGA tumor-normal mutation data was obtained for 10,437 patients, representing 31 of the most prevalent forms of cancer. Stratified random sampling was used to split patients into training, tuning and validation cohorts for each cancer type. Cancer specific machine learning (XGBoost) models were built using the output from the P142 panel to predict patient Progression Free Survival (PFS) status as either “High PFS” or “Low PFS”. Predictive performance of each model was evaluated using the validation cohort. Models accurately predicted PFS status for several cancer types, including adrenocortical carcinoma, glioma, mesothelioma, and sarcoma. In conclusion, the P142 panel of metrics successfully predicted cancer progression status in patients with some, but not all cancer types analyzed. These results pave the way for future studies on cancer progression associated signatures." @default.
- W3156130124 created "2021-04-26" @default.
- W3156130124 creator A5022512660 @default.
- W3156130124 creator A5049751260 @default.
- W3156130124 creator A5079238845 @default.
- W3156130124 date "2021-04-13" @default.
- W3156130124 modified "2023-09-26" @default.
- W3156130124 title "Predicting clinical outcomes using cancer progression associated signatures" @default.
- W3156130124 cites W1484128005 @default.
- W3156130124 cites W1831050183 @default.
- W3156130124 cites W1842792112 @default.
- W3156130124 cites W1997746246 @default.
- W3156130124 cites W1999207703 @default.
- W3156130124 cites W2003665515 @default.
- W3156130124 cites W2009415354 @default.
- W3156130124 cites W2041993682 @default.
- W3156130124 cites W2047852652 @default.
- W3156130124 cites W2052428345 @default.
- W3156130124 cites W2095301528 @default.
- W3156130124 cites W2100984579 @default.
- W3156130124 cites W2104153021 @default.
- W3156130124 cites W2114843025 @default.
- W3156130124 cites W2116087493 @default.
- W3156130124 cites W2121647638 @default.
- W3156130124 cites W2149441684 @default.
- W3156130124 cites W2150677022 @default.
- W3156130124 cites W2152061559 @default.
- W3156130124 cites W2157550829 @default.
- W3156130124 cites W2160450758 @default.
- W3156130124 cites W2164777277 @default.
- W3156130124 cites W2171690009 @default.
- W3156130124 cites W2173818354 @default.
- W3156130124 cites W2193739999 @default.
- W3156130124 cites W2294814189 @default.
- W3156130124 cites W2402730620 @default.
- W3156130124 cites W2477436231 @default.
- W3156130124 cites W2517421365 @default.
- W3156130124 cites W2538407824 @default.
- W3156130124 cites W2581092012 @default.
- W3156130124 cites W2596164112 @default.
- W3156130124 cites W2601286467 @default.
- W3156130124 cites W2606881395 @default.
- W3156130124 cites W2613362156 @default.
- W3156130124 cites W2620442533 @default.
- W3156130124 cites W2752658156 @default.
- W3156130124 cites W2763946748 @default.
- W3156130124 cites W2799320595 @default.
- W3156130124 cites W2808975613 @default.
- W3156130124 cites W2868903189 @default.
- W3156130124 cites W2885104676 @default.
- W3156130124 cites W2889646458 @default.
- W3156130124 cites W2895926103 @default.
- W3156130124 cites W2906889822 @default.
- W3156130124 cites W2908755714 @default.
- W3156130124 cites W2916032178 @default.
- W3156130124 cites W2947219786 @default.
- W3156130124 cites W2947747865 @default.
- W3156130124 cites W2956135855 @default.
- W3156130124 cites W2963141093 @default.
- W3156130124 cites W2979923810 @default.
- W3156130124 cites W2990427812 @default.
- W3156130124 cites W3000552588 @default.
- W3156130124 cites W3004480399 @default.
- W3156130124 cites W3008604648 @default.
- W3156130124 cites W3012347259 @default.
- W3156130124 cites W3013369088 @default.
- W3156130124 cites W3014626689 @default.
- W3156130124 cites W3016137891 @default.
- W3156130124 cites W3023180345 @default.
- W3156130124 cites W3028016229 @default.
- W3156130124 cites W3036901136 @default.
- W3156130124 cites W3037151668 @default.
- W3156130124 cites W3038425450 @default.
- W3156130124 cites W3041219630 @default.
- W3156130124 cites W3080152507 @default.
- W3156130124 cites W3082740270 @default.
- W3156130124 cites W3083132420 @default.
- W3156130124 cites W3102476541 @default.
- W3156130124 cites W3110281866 @default.
- W3156130124 cites W3110326965 @default.
- W3156130124 cites W3122646881 @default.
- W3156130124 doi "https://doi.org/10.18632/oncotarget.27934" @default.
- W3156130124 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8057277" @default.
- W3156130124 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33889305" @default.
- W3156130124 hasPublicationYear "2021" @default.
- W3156130124 type Work @default.
- W3156130124 sameAs 3156130124 @default.
- W3156130124 citedByCount "1" @default.
- W3156130124 countsByYear W31561301242023 @default.
- W3156130124 crossrefType "journal-article" @default.
- W3156130124 hasAuthorship W3156130124A5022512660 @default.
- W3156130124 hasAuthorship W3156130124A5049751260 @default.
- W3156130124 hasAuthorship W3156130124A5079238845 @default.
- W3156130124 hasBestOaLocation W31561301241 @default.
- W3156130124 hasConcept C121608353 @default.
- W3156130124 hasConcept C126322002 @default.
- W3156130124 hasConcept C143998085 @default.
- W3156130124 hasConcept C151730666 @default.