Matches in SemOpenAlex for { <https://semopenalex.org/work/W3156135312> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W3156135312 abstract "The paradigm of swarm robotics aims to enable several independent robots to collaborate together toward collective goals. The distributed nature of a swarm, whereby each robot acts independently in accordance with its perceived environment, is expected to provide the system with a high degree of flexibility, robustness, and scalability. However, this comes at the cost of increased system complexity. This thesis explores how to automatically design a collective behavior in a way that is transparent and verifiable. The thesis begins by taking a step back and analyzing the design choices that need to be made when designing a swarm of robots. Through an in-depth literature study, focusing on swarms of small drones as a case study, we found how sensor and actuator choices can create constraints for the swarm behavior that can be achieved, and how desired swarm behaviors can create requirements for the hardware design and local-level controllers. Coincidentally, we found a prominent example of this in our own research on relative localization sensors for swarms of tiny drones (performed in addition to the research in this thesis), whereby we developed a communication-based relative localization approach that enabled teams of tiny drones to fly together in tight areas, the advantages being: omni-directional sensing, independence from lighting conditions and/or visual clutter, low mass, and low computational costs. However, this solution also comes with the restriction of ensuring that robots never move parallel to each other, as this will present an unobservable situation. Based on such lessons, the remainder of the thesis aims for a framework that is agnostic with respect to the robot and the swarm's collective task. The framework proposed in this thesis is centered around the following notion: a collective goal can be broken down into a set of locally observable objectives which the robots can sense, referred to as ``desired'' objectives. The robots then take actions in order to reach these desired objectives. When all robots achieve the desired objectives, then the global goal and/or collective behavior emerges. This framework was first developed for the specific case study of pattern formation by cognitively limited robots, which could only sense the relative location of close-by neighbors. It was later generalized, and its use was demonstrated on other collective tasks, namely: aggregation, consensus, and foraging. Through a local model of agent transitions, it was possible to: 1) identify potential obstructions to achieving the collective goal, and 2) optimize the behavior of the robots so as to maximize the likelihood of achieving the desired objectives. The optimization is performed by an evolutionary algorithm that leverages the local model, whereby the fitness function maximizes the probability of being in a desired local state. Using this approach, the policy evaluation only scales with the size of the local state space, and demands much less computation than swarm simulations would. In the final stage of this research, a complete framework was further developed to alleviate the need to manually define the desired objectives as well as the local models required for potential verification and/or optimization. The framework uses a data-driven approach to automatically extract two models: 1) a deep neural network that estimates the global performance of the swarm from the distribution of local sensor data, and 2) a probabilistic state transition model that explicitly models the local state transitions (i.e., transitions in observations from the perspective of a single robot in a swarm) given a policy. The framework can efficiently lead to effective controllers, as demonstrated via multiple case studies. It can also be used in combination with an evolutionary optimization process, leading to higher efficiency, or for heterogeneous online learning. Overall, the methods and insights developed in this thesis propose a new way to approach the development of verifiable and understandable behaviors for swarms of robots, using models in order to perform analysis, verification, and optimization." @default.
- W3156135312 created "2021-04-26" @default.
- W3156135312 creator A5048606189 @default.
- W3156135312 date "2021-01-01" @default.
- W3156135312 modified "2023-09-23" @default.
- W3156135312 title "Automatic Design of Verifiable Robot Swarms" @default.
- W3156135312 doi "https://doi.org/10.4233/uuid:b6ad7ddd-c660-4aab-8277-65f7a22a4a52" @default.
- W3156135312 hasPublicationYear "2021" @default.
- W3156135312 type Work @default.
- W3156135312 sameAs 3156135312 @default.
- W3156135312 citedByCount "0" @default.
- W3156135312 crossrefType "journal-article" @default.
- W3156135312 hasAuthorship W3156135312A5048606189 @default.
- W3156135312 hasConcept C104317684 @default.
- W3156135312 hasConcept C105795698 @default.
- W3156135312 hasConcept C107457646 @default.
- W3156135312 hasConcept C120314980 @default.
- W3156135312 hasConcept C127413603 @default.
- W3156135312 hasConcept C133731056 @default.
- W3156135312 hasConcept C154945302 @default.
- W3156135312 hasConcept C169337768 @default.
- W3156135312 hasConcept C177264268 @default.
- W3156135312 hasConcept C181335050 @default.
- W3156135312 hasConcept C185592680 @default.
- W3156135312 hasConcept C199360897 @default.
- W3156135312 hasConcept C19966478 @default.
- W3156135312 hasConcept C2780598303 @default.
- W3156135312 hasConcept C33923547 @default.
- W3156135312 hasConcept C34413123 @default.
- W3156135312 hasConcept C41008148 @default.
- W3156135312 hasConcept C44832474 @default.
- W3156135312 hasConcept C48044578 @default.
- W3156135312 hasConcept C54355233 @default.
- W3156135312 hasConcept C55493867 @default.
- W3156135312 hasConcept C59519942 @default.
- W3156135312 hasConcept C63479239 @default.
- W3156135312 hasConcept C65401140 @default.
- W3156135312 hasConcept C77088390 @default.
- W3156135312 hasConcept C85847156 @default.
- W3156135312 hasConcept C86803240 @default.
- W3156135312 hasConcept C90509273 @default.
- W3156135312 hasConceptScore W3156135312C104317684 @default.
- W3156135312 hasConceptScore W3156135312C105795698 @default.
- W3156135312 hasConceptScore W3156135312C107457646 @default.
- W3156135312 hasConceptScore W3156135312C120314980 @default.
- W3156135312 hasConceptScore W3156135312C127413603 @default.
- W3156135312 hasConceptScore W3156135312C133731056 @default.
- W3156135312 hasConceptScore W3156135312C154945302 @default.
- W3156135312 hasConceptScore W3156135312C169337768 @default.
- W3156135312 hasConceptScore W3156135312C177264268 @default.
- W3156135312 hasConceptScore W3156135312C181335050 @default.
- W3156135312 hasConceptScore W3156135312C185592680 @default.
- W3156135312 hasConceptScore W3156135312C199360897 @default.
- W3156135312 hasConceptScore W3156135312C19966478 @default.
- W3156135312 hasConceptScore W3156135312C2780598303 @default.
- W3156135312 hasConceptScore W3156135312C33923547 @default.
- W3156135312 hasConceptScore W3156135312C34413123 @default.
- W3156135312 hasConceptScore W3156135312C41008148 @default.
- W3156135312 hasConceptScore W3156135312C44832474 @default.
- W3156135312 hasConceptScore W3156135312C48044578 @default.
- W3156135312 hasConceptScore W3156135312C54355233 @default.
- W3156135312 hasConceptScore W3156135312C55493867 @default.
- W3156135312 hasConceptScore W3156135312C59519942 @default.
- W3156135312 hasConceptScore W3156135312C63479239 @default.
- W3156135312 hasConceptScore W3156135312C65401140 @default.
- W3156135312 hasConceptScore W3156135312C77088390 @default.
- W3156135312 hasConceptScore W3156135312C85847156 @default.
- W3156135312 hasConceptScore W3156135312C86803240 @default.
- W3156135312 hasConceptScore W3156135312C90509273 @default.
- W3156135312 hasLocation W31561353121 @default.
- W3156135312 hasOpenAccess W3156135312 @default.
- W3156135312 hasPrimaryLocation W31561353121 @default.
- W3156135312 hasRelatedWork W1583262759 @default.
- W3156135312 hasRelatedWork W1798193704 @default.
- W3156135312 hasRelatedWork W182691661 @default.
- W3156135312 hasRelatedWork W1878636045 @default.
- W3156135312 hasRelatedWork W2062932390 @default.
- W3156135312 hasRelatedWork W2182812327 @default.
- W3156135312 hasRelatedWork W2221127611 @default.
- W3156135312 hasRelatedWork W2328510172 @default.
- W3156135312 hasRelatedWork W2594816432 @default.
- W3156135312 hasRelatedWork W2739422576 @default.
- W3156135312 hasRelatedWork W2768931869 @default.
- W3156135312 hasRelatedWork W2783234529 @default.
- W3156135312 hasRelatedWork W2783378806 @default.
- W3156135312 hasRelatedWork W2785652786 @default.
- W3156135312 hasRelatedWork W2794706234 @default.
- W3156135312 hasRelatedWork W2805131108 @default.
- W3156135312 hasRelatedWork W2905276483 @default.
- W3156135312 hasRelatedWork W2945656238 @default.
- W3156135312 hasRelatedWork W2950273886 @default.
- W3156135312 hasRelatedWork W3135677008 @default.
- W3156135312 isParatext "false" @default.
- W3156135312 isRetracted "false" @default.
- W3156135312 magId "3156135312" @default.
- W3156135312 workType "article" @default.