Matches in SemOpenAlex for { <https://semopenalex.org/work/W3156157083> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W3156157083 endingPage "2785" @default.
- W3156157083 startingPage "2785" @default.
- W3156157083 abstract "The number of elderly people has increased as life expectancy increases. As muscle strength decreases with aging, it is easy to feel tired while walking, which is an activity of daily living (ADL), or suffer a fall accident. To compensate the walking problems, the terrain environment must be considered, and in this study, we developed the locomotion mode recognition (LMR) algorithm based on the gaussian mixture model (GMM) using inertial measurement unit (IMU) sensors to classify the five terrains (level walking, stair ascent/descent, ramp ascent/descent). In order to meet the walking conditions of the elderly people, the walking speed index from 20 to 89 years old was used, and the beats per minute (BPM) method was adopted considering the speed range for each age groups. The experiment was conducted with the assumption that the healthy people walked according to the BPM rhythm, and to apply the algorithm to the exoskeleton robot later, a full/individual dependent model was used by selecting a data collection method. Regarding the full dependent model as the representative model, the accuracy of classifying the stair terrains and level walking/ramp terrains is BPM 90: 98.74%, 95.78%, BPM 110: 99.33%, 95.75%, and BPM 130: 98.39%, 87.54%, respectively. The consumption times were 14.5, 21.1, and 14 ms according to BPM 90/110/130, respectively. LMR algorithm that satisfies the high classification accuracy according to walking speed has been developed. In the future, the LMR algorithm will be applied to the actual hip exoskeleton robot, and the gait phase estimation algorithm that estimates the user’s gait intention is to be combined. Additionally, when a user wearing a hip exoskeleton robot walks, we will check whether the combined algorithm properly supports the muscle strength." @default.
- W3156157083 created "2021-04-26" @default.
- W3156157083 creator A5020479276 @default.
- W3156157083 creator A5032427500 @default.
- W3156157083 creator A5042807760 @default.
- W3156157083 date "2021-04-15" @default.
- W3156157083 modified "2023-10-16" @default.
- W3156157083 title "Locomotion Mode Recognition Algorithm Based on Gaussian Mixture Model Using IMU Sensors" @default.
- W3156157083 cites W1976150333 @default.
- W3156157083 cites W2006189386 @default.
- W3156157083 cites W2017918432 @default.
- W3156157083 cites W2076958083 @default.
- W3156157083 cites W2090283616 @default.
- W3156157083 cites W2101181748 @default.
- W3156157083 cites W2120000263 @default.
- W3156157083 cites W2804402977 @default.
- W3156157083 cites W2891384847 @default.
- W3156157083 cites W2994286812 @default.
- W3156157083 cites W3003912462 @default.
- W3156157083 cites W3005390993 @default.
- W3156157083 cites W3012448712 @default.
- W3156157083 cites W3015890151 @default.
- W3156157083 cites W3025462103 @default.
- W3156157083 cites W3080910328 @default.
- W3156157083 cites W3120935742 @default.
- W3156157083 cites W3127168948 @default.
- W3156157083 doi "https://doi.org/10.3390/s21082785" @default.
- W3156157083 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8071300" @default.
- W3156157083 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33920969" @default.
- W3156157083 hasPublicationYear "2021" @default.
- W3156157083 type Work @default.
- W3156157083 sameAs 3156157083 @default.
- W3156157083 citedByCount "5" @default.
- W3156157083 countsByYear W31561570832022 @default.
- W3156157083 countsByYear W31561570832023 @default.
- W3156157083 crossrefType "journal-article" @default.
- W3156157083 hasAuthorship W3156157083A5020479276 @default.
- W3156157083 hasAuthorship W3156157083A5032427500 @default.
- W3156157083 hasAuthorship W3156157083A5042807760 @default.
- W3156157083 hasBestOaLocation W31561570831 @default.
- W3156157083 hasConcept C111919701 @default.
- W3156157083 hasConcept C11413529 @default.
- W3156157083 hasConcept C146549078 @default.
- W3156157083 hasConcept C151800584 @default.
- W3156157083 hasConcept C154945302 @default.
- W3156157083 hasConcept C161840515 @default.
- W3156157083 hasConcept C18903297 @default.
- W3156157083 hasConcept C41008148 @default.
- W3156157083 hasConcept C44154836 @default.
- W3156157083 hasConcept C61224824 @default.
- W3156157083 hasConcept C70770792 @default.
- W3156157083 hasConcept C71924100 @default.
- W3156157083 hasConcept C79061980 @default.
- W3156157083 hasConcept C86803240 @default.
- W3156157083 hasConcept C89805583 @default.
- W3156157083 hasConcept C99508421 @default.
- W3156157083 hasConceptScore W3156157083C111919701 @default.
- W3156157083 hasConceptScore W3156157083C11413529 @default.
- W3156157083 hasConceptScore W3156157083C146549078 @default.
- W3156157083 hasConceptScore W3156157083C151800584 @default.
- W3156157083 hasConceptScore W3156157083C154945302 @default.
- W3156157083 hasConceptScore W3156157083C161840515 @default.
- W3156157083 hasConceptScore W3156157083C18903297 @default.
- W3156157083 hasConceptScore W3156157083C41008148 @default.
- W3156157083 hasConceptScore W3156157083C44154836 @default.
- W3156157083 hasConceptScore W3156157083C61224824 @default.
- W3156157083 hasConceptScore W3156157083C70770792 @default.
- W3156157083 hasConceptScore W3156157083C71924100 @default.
- W3156157083 hasConceptScore W3156157083C79061980 @default.
- W3156157083 hasConceptScore W3156157083C86803240 @default.
- W3156157083 hasConceptScore W3156157083C89805583 @default.
- W3156157083 hasConceptScore W3156157083C99508421 @default.
- W3156157083 hasFunder F4320322107 @default.
- W3156157083 hasIssue "8" @default.
- W3156157083 hasLocation W31561570831 @default.
- W3156157083 hasLocation W31561570832 @default.
- W3156157083 hasLocation W31561570833 @default.
- W3156157083 hasLocation W31561570834 @default.
- W3156157083 hasOpenAccess W3156157083 @default.
- W3156157083 hasPrimaryLocation W31561570831 @default.
- W3156157083 hasRelatedWork W2051161423 @default.
- W3156157083 hasRelatedWork W2106701171 @default.
- W3156157083 hasRelatedWork W2494850111 @default.
- W3156157083 hasRelatedWork W2564615886 @default.
- W3156157083 hasRelatedWork W2977326683 @default.
- W3156157083 hasRelatedWork W4291274560 @default.
- W3156157083 hasRelatedWork W4296343073 @default.
- W3156157083 hasRelatedWork W4297282285 @default.
- W3156157083 hasRelatedWork W4308735990 @default.
- W3156157083 hasRelatedWork W4319872523 @default.
- W3156157083 hasVolume "21" @default.
- W3156157083 isParatext "false" @default.
- W3156157083 isRetracted "false" @default.
- W3156157083 magId "3156157083" @default.
- W3156157083 workType "article" @default.