Matches in SemOpenAlex for { <https://semopenalex.org/work/W3156182227> ?p ?o ?g. }
- W3156182227 abstract "Abstract Thermophilic Methanothermobacter spp. are used as model microbes to study the physiology and biochemistry of the conversion of hydrogen and carbon dioxide into methane ( i.e ., hydrogenotrophic methanogenesis), because of their short doubling times and robust growth with high growth yields. Yet, a genetic system for these model microbes was missing despite intense work for four decades. Here, we report the establishment of tools for genetic modification of M. thermautotrophicus . We developed the modular Methanothermobacter vector system, which provided shuttle-vector plasmids (pMVS) with exchangeable selectable markers and replicons for both Escherichia coli and M. thermautotrophicus . For M. thermautotrophicus , a thermostable neomycin-resistance cassette served as the selectable marker for positive selection with neomycin, and the cryptic plasmid pME2001 from Methanothermobacter marburgensis served as the replicon. The pMVS-plasmid DNA was transferred from E. coli into M. thermautotrophicus via interdomain conjugation. After the successful validation of DNA transfer and positive selection in M. thermautotrophicus , we demonstrated heterologous gene expression of a thermostable β-galactosidase-encoding gene ( bgaB ) from Geobacillus stearothermophilus under the expression control of four distinct synthetic and native promoters. In quantitative in-vitro enzyme activity assays, we found significantly different β-galactosidase activity with these distinct promoters. With a formate dehydrogenase operon-encoding shuttle vector, we allowed growth of M. thermautotrophicus on formate as the sole growth substrate, while this was not possible for the empty vector control. These genetic tools provide the basis to investigate hypotheses from four decades of research on the physiology and biochemistry of Methanothermobacter spp. on a genetic level. Significance Statement The world economies are facing permanently increasing energy demands. At the same time, carbon emissions from fossil sources need to be circumvented to minimize harmful effects from climate change. The power-to-gas platform is utilized to store renewable electric power and decarbonize the natural gas grid. The microbe Methanothermobacter thermautotrophicus is already applied as the industrial biocatalyst for the biological methanation step in large-scale power-to-gas processes. To improve the biocatalyst in a targeted fashion, genetic engineering is required. With our shuttle-vector system for heterologous gene expression in M. thermautotrophicus , we set the cornerstone to engineer the microbe for optimized methane production, but also for production of high-value platform chemicals in power-to-x processes." @default.
- W3156182227 created "2021-04-26" @default.
- W3156182227 creator A5007960132 @default.
- W3156182227 creator A5009704554 @default.
- W3156182227 creator A5025455130 @default.
- W3156182227 creator A5041232390 @default.
- W3156182227 creator A5046224330 @default.
- W3156182227 creator A5091351952 @default.
- W3156182227 date "2021-04-20" @default.
- W3156182227 modified "2023-09-26" @default.
- W3156182227 title "A shuttle-vector system allows heterologous gene expression in the thermophilic methanogen <i>Methanothermobacter thermautotrophicus</i> ΔH" @default.
- W3156182227 cites W1494169404 @default.
- W3156182227 cites W1520535980 @default.
- W3156182227 cites W1520930575 @default.
- W3156182227 cites W1562657740 @default.
- W3156182227 cites W1752193767 @default.
- W3156182227 cites W1808419399 @default.
- W3156182227 cites W1955725467 @default.
- W3156182227 cites W1967806240 @default.
- W3156182227 cites W1971015996 @default.
- W3156182227 cites W1996039824 @default.
- W3156182227 cites W2002170620 @default.
- W3156182227 cites W2008098646 @default.
- W3156182227 cites W2017605064 @default.
- W3156182227 cites W2022916467 @default.
- W3156182227 cites W2040566079 @default.
- W3156182227 cites W2040642111 @default.
- W3156182227 cites W2047304632 @default.
- W3156182227 cites W2047821263 @default.
- W3156182227 cites W2049823785 @default.
- W3156182227 cites W2065258371 @default.
- W3156182227 cites W2107325876 @default.
- W3156182227 cites W2115806782 @default.
- W3156182227 cites W2121797488 @default.
- W3156182227 cites W2124148907 @default.
- W3156182227 cites W2126681840 @default.
- W3156182227 cites W2128885095 @default.
- W3156182227 cites W2129119064 @default.
- W3156182227 cites W2134803601 @default.
- W3156182227 cites W2137909527 @default.
- W3156182227 cites W2143538634 @default.
- W3156182227 cites W2154111113 @default.
- W3156182227 cites W2154347365 @default.
- W3156182227 cites W2155588925 @default.
- W3156182227 cites W2158178789 @default.
- W3156182227 cites W2164954842 @default.
- W3156182227 cites W2170962922 @default.
- W3156182227 cites W2171954247 @default.
- W3156182227 cites W2409861546 @default.
- W3156182227 cites W2509534591 @default.
- W3156182227 cites W2750746973 @default.
- W3156182227 cites W2781678624 @default.
- W3156182227 cites W2933454459 @default.
- W3156182227 cites W2943370576 @default.
- W3156182227 cites W2955694907 @default.
- W3156182227 cites W2979911048 @default.
- W3156182227 cites W4232550678 @default.
- W3156182227 doi "https://doi.org/10.1101/2021.04.20.440605" @default.
- W3156182227 hasPublicationYear "2021" @default.
- W3156182227 type Work @default.
- W3156182227 sameAs 3156182227 @default.
- W3156182227 citedByCount "4" @default.
- W3156182227 countsByYear W31561822272021 @default.
- W3156182227 countsByYear W31561822272022 @default.
- W3156182227 crossrefType "posted-content" @default.
- W3156182227 hasAuthorship W3156182227A5007960132 @default.
- W3156182227 hasAuthorship W3156182227A5009704554 @default.
- W3156182227 hasAuthorship W3156182227A5025455130 @default.
- W3156182227 hasAuthorship W3156182227A5041232390 @default.
- W3156182227 hasAuthorship W3156182227A5046224330 @default.
- W3156182227 hasAuthorship W3156182227A5091351952 @default.
- W3156182227 hasBestOaLocation W31561822271 @default.
- W3156182227 hasConcept C104317684 @default.
- W3156182227 hasConcept C108305142 @default.
- W3156182227 hasConcept C145640855 @default.
- W3156182227 hasConcept C18103114 @default.
- W3156182227 hasConcept C203075996 @default.
- W3156182227 hasConcept C22744801 @default.
- W3156182227 hasConcept C2778589620 @default.
- W3156182227 hasConcept C27911776 @default.
- W3156182227 hasConcept C33161422 @default.
- W3156182227 hasConcept C40767141 @default.
- W3156182227 hasConcept C42411736 @default.
- W3156182227 hasConcept C523546767 @default.
- W3156182227 hasConcept C54355233 @default.
- W3156182227 hasConcept C547475151 @default.
- W3156182227 hasConcept C55493867 @default.
- W3156182227 hasConcept C86803240 @default.
- W3156182227 hasConcept C92087593 @default.
- W3156182227 hasConceptScore W3156182227C104317684 @default.
- W3156182227 hasConceptScore W3156182227C108305142 @default.
- W3156182227 hasConceptScore W3156182227C145640855 @default.
- W3156182227 hasConceptScore W3156182227C18103114 @default.
- W3156182227 hasConceptScore W3156182227C203075996 @default.
- W3156182227 hasConceptScore W3156182227C22744801 @default.
- W3156182227 hasConceptScore W3156182227C2778589620 @default.
- W3156182227 hasConceptScore W3156182227C27911776 @default.
- W3156182227 hasConceptScore W3156182227C33161422 @default.
- W3156182227 hasConceptScore W3156182227C40767141 @default.
- W3156182227 hasConceptScore W3156182227C42411736 @default.