Matches in SemOpenAlex for { <https://semopenalex.org/work/W3156201544> ?p ?o ?g. }
- W3156201544 endingPage "e0249856" @default.
- W3156201544 startingPage "e0249856" @default.
- W3156201544 abstract "Objective To assess whether machine learning algorithms (MLA) can predict eyes that will undergo rapid glaucoma progression based on an initial visual field (VF) test. Design Retrospective analysis of longitudinal data. Subjects 175,786 VFs (22,925 initial VFs) from 14,217 patients who completed ≥5 reliable VFs at academic glaucoma centers were included. Methods Summary measures and reliability metrics from the initial VF and age were used to train MLA designed to predict the likelihood of rapid progression. Additionally, the neural network model was trained with point-wise threshold data in addition to summary measures, reliability metrics and age. 80% of eyes were used for a training set and 20% were used as a test set. MLA test set performance was assessed using the area under the receiver operating curve (AUC). Performance of models trained on initial VF data alone was compared to performance of models trained on data from the first two VFs. Main outcome measures Accuracy in predicting future rapid progression defined as MD worsening more than 1 dB/year. Results 1,968 eyes (8.6%) underwent rapid progression. The support vector machine model (AUC 0.72 [95% CI 0.70–0.75]) most accurately predicted rapid progression when trained on initial VF data. Artificial neural network, random forest, logistic regression and naïve Bayes classifiers produced AUC of 0.72, 0.70, 0.69, 0.68 respectively. Models trained on data from the first two VFs performed no better than top models trained on the initial VF alone. Based on the odds ratio (OR) from logistic regression and variable importance plots from the random forest model, older age (OR: 1.41 per 10 year increment [95% CI: 1.34 to 1.08]) and higher pattern standard deviation (OR: 1.31 per 5-dB increment [95% CI: 1.18 to 1.46]) were the variables in the initial VF most strongly associated with rapid progression. Conclusions MLA can be used to predict eyes at risk for rapid progression with modest accuracy based on an initial VF test. Incorporating additional clinical data to the current model may offer opportunities to predict patients most likely to rapidly progress with even greater accuracy." @default.
- W3156201544 created "2021-04-26" @default.
- W3156201544 creator A5010480125 @default.
- W3156201544 creator A5032325357 @default.
- W3156201544 creator A5033603144 @default.
- W3156201544 creator A5047341378 @default.
- W3156201544 creator A5056035806 @default.
- W3156201544 creator A5059589308 @default.
- W3156201544 creator A5062453784 @default.
- W3156201544 creator A5063014509 @default.
- W3156201544 creator A5084071114 @default.
- W3156201544 date "2021-04-16" @default.
- W3156201544 modified "2023-10-12" @default.
- W3156201544 title "Predicting eyes at risk for rapid glaucoma progression based on an initial visual field test using machine learning" @default.
- W3156201544 cites W1972747837 @default.
- W3156201544 cites W1982114136 @default.
- W3156201544 cites W1988673237 @default.
- W3156201544 cites W1999677058 @default.
- W3156201544 cites W2011481648 @default.
- W3156201544 cites W2014388846 @default.
- W3156201544 cites W2020112862 @default.
- W3156201544 cites W2026209674 @default.
- W3156201544 cites W2026582925 @default.
- W3156201544 cites W2045519105 @default.
- W3156201544 cites W2054462224 @default.
- W3156201544 cites W2055291030 @default.
- W3156201544 cites W2061841032 @default.
- W3156201544 cites W2063316149 @default.
- W3156201544 cites W2063829909 @default.
- W3156201544 cites W2066600245 @default.
- W3156201544 cites W2076063813 @default.
- W3156201544 cites W2077037485 @default.
- W3156201544 cites W2078407437 @default.
- W3156201544 cites W2103804004 @default.
- W3156201544 cites W2110897487 @default.
- W3156201544 cites W2111574971 @default.
- W3156201544 cites W2133671386 @default.
- W3156201544 cites W2137768349 @default.
- W3156201544 cites W2148890166 @default.
- W3156201544 cites W2163191780 @default.
- W3156201544 cites W2469369919 @default.
- W3156201544 cites W2492513888 @default.
- W3156201544 cites W2538869024 @default.
- W3156201544 cites W2580869318 @default.
- W3156201544 cites W2616044243 @default.
- W3156201544 cites W2733018469 @default.
- W3156201544 cites W2766593955 @default.
- W3156201544 cites W2796421769 @default.
- W3156201544 cites W2895341107 @default.
- W3156201544 cites W2903730647 @default.
- W3156201544 cites W2911964244 @default.
- W3156201544 cites W2942760134 @default.
- W3156201544 cites W2988121614 @default.
- W3156201544 cites W773877995 @default.
- W3156201544 doi "https://doi.org/10.1371/journal.pone.0249856" @default.
- W3156201544 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8051770" @default.
- W3156201544 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33861775" @default.
- W3156201544 hasPublicationYear "2021" @default.
- W3156201544 type Work @default.
- W3156201544 sameAs 3156201544 @default.
- W3156201544 citedByCount "16" @default.
- W3156201544 countsByYear W31562015442021 @default.
- W3156201544 countsByYear W31562015442022 @default.
- W3156201544 countsByYear W31562015442023 @default.
- W3156201544 crossrefType "journal-article" @default.
- W3156201544 hasAuthorship W3156201544A5010480125 @default.
- W3156201544 hasAuthorship W3156201544A5032325357 @default.
- W3156201544 hasAuthorship W3156201544A5033603144 @default.
- W3156201544 hasAuthorship W3156201544A5047341378 @default.
- W3156201544 hasAuthorship W3156201544A5056035806 @default.
- W3156201544 hasAuthorship W3156201544A5059589308 @default.
- W3156201544 hasAuthorship W3156201544A5062453784 @default.
- W3156201544 hasAuthorship W3156201544A5063014509 @default.
- W3156201544 hasAuthorship W3156201544A5084071114 @default.
- W3156201544 hasBestOaLocation W31562015441 @default.
- W3156201544 hasConcept C107673813 @default.
- W3156201544 hasConcept C118487528 @default.
- W3156201544 hasConcept C119857082 @default.
- W3156201544 hasConcept C121332964 @default.
- W3156201544 hasConcept C12267149 @default.
- W3156201544 hasConcept C151956035 @default.
- W3156201544 hasConcept C154945302 @default.
- W3156201544 hasConcept C163258240 @default.
- W3156201544 hasConcept C16910744 @default.
- W3156201544 hasConcept C169258074 @default.
- W3156201544 hasConcept C169903167 @default.
- W3156201544 hasConcept C199360897 @default.
- W3156201544 hasConcept C207201462 @default.
- W3156201544 hasConcept C2778527774 @default.
- W3156201544 hasConcept C2781283680 @default.
- W3156201544 hasConcept C41008148 @default.
- W3156201544 hasConcept C43214815 @default.
- W3156201544 hasConcept C50644808 @default.
- W3156201544 hasConcept C52001869 @default.
- W3156201544 hasConcept C58471807 @default.
- W3156201544 hasConcept C58489278 @default.
- W3156201544 hasConcept C62520636 @default.
- W3156201544 hasConcept C71924100 @default.