Matches in SemOpenAlex for { <https://semopenalex.org/work/W3156210498> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W3156210498 abstract "Delamination type of failure is extremely common in laminated structures and is a primary reason for failure in many use cases especially in aircrafts. In this project, Machine Learning Techniques were employed to detect the crack size and location in a four-layered laminated structure. The dataset for this problem statement was not available so it had to be generated and to do so ANSYS 18.0 was used. One structural model without any cracks was modeled and a training set with 2000 samples was generated to output the natural frequencies with different crack locations and sizes. Two regressor machine learning architectures with three algorithms (Linear regressor, Random Forest regressor and XGB Regressor) were developed for the prediction task, one to predict the area of the delamination and the other was a multioutput regressor model, which had to predict the X and Y coordinates of the center of the crack. The Random Forest Regressor gave the best generalizability in predicting the area of the delamination although linear regressor was not far behind as it performed quite remarkably given its simplicity. While predicting the locations, linear regressor gave the best test performance although hyperparameter tuning of the random forest and XGB regressor achieved similar results as compared with the linear regressor." @default.
- W3156210498 created "2021-04-26" @default.
- W3156210498 creator A5054507404 @default.
- W3156210498 creator A5066834146 @default.
- W3156210498 creator A5084921412 @default.
- W3156210498 date "2021-01-01" @default.
- W3156210498 modified "2023-10-14" @default.
- W3156210498 title "Delamination Detection and Localization in Laminated Structures Using Machine Learning Techniques" @default.
- W3156210498 cites W2013271430 @default.
- W3156210498 cites W2014610119 @default.
- W3156210498 cites W2049700678 @default.
- W3156210498 cites W2807042118 @default.
- W3156210498 doi "https://doi.org/10.1007/978-981-15-9956-9_22" @default.
- W3156210498 hasPublicationYear "2021" @default.
- W3156210498 type Work @default.
- W3156210498 sameAs 3156210498 @default.
- W3156210498 citedByCount "1" @default.
- W3156210498 countsByYear W31562104982023 @default.
- W3156210498 crossrefType "book-chapter" @default.
- W3156210498 hasAuthorship W3156210498A5054507404 @default.
- W3156210498 hasAuthorship W3156210498A5066834146 @default.
- W3156210498 hasAuthorship W3156210498A5084921412 @default.
- W3156210498 hasConcept C105795698 @default.
- W3156210498 hasConcept C119857082 @default.
- W3156210498 hasConcept C127313418 @default.
- W3156210498 hasConcept C127413603 @default.
- W3156210498 hasConcept C151730666 @default.
- W3156210498 hasConcept C153180895 @default.
- W3156210498 hasConcept C154945302 @default.
- W3156210498 hasConcept C169258074 @default.
- W3156210498 hasConcept C177264268 @default.
- W3156210498 hasConcept C199360897 @default.
- W3156210498 hasConcept C27158222 @default.
- W3156210498 hasConcept C30239060 @default.
- W3156210498 hasConcept C33923547 @default.
- W3156210498 hasConcept C41008148 @default.
- W3156210498 hasConcept C58097730 @default.
- W3156210498 hasConcept C66938386 @default.
- W3156210498 hasConcept C77928131 @default.
- W3156210498 hasConcept C8642999 @default.
- W3156210498 hasConceptScore W3156210498C105795698 @default.
- W3156210498 hasConceptScore W3156210498C119857082 @default.
- W3156210498 hasConceptScore W3156210498C127313418 @default.
- W3156210498 hasConceptScore W3156210498C127413603 @default.
- W3156210498 hasConceptScore W3156210498C151730666 @default.
- W3156210498 hasConceptScore W3156210498C153180895 @default.
- W3156210498 hasConceptScore W3156210498C154945302 @default.
- W3156210498 hasConceptScore W3156210498C169258074 @default.
- W3156210498 hasConceptScore W3156210498C177264268 @default.
- W3156210498 hasConceptScore W3156210498C199360897 @default.
- W3156210498 hasConceptScore W3156210498C27158222 @default.
- W3156210498 hasConceptScore W3156210498C30239060 @default.
- W3156210498 hasConceptScore W3156210498C33923547 @default.
- W3156210498 hasConceptScore W3156210498C41008148 @default.
- W3156210498 hasConceptScore W3156210498C58097730 @default.
- W3156210498 hasConceptScore W3156210498C66938386 @default.
- W3156210498 hasConceptScore W3156210498C77928131 @default.
- W3156210498 hasConceptScore W3156210498C8642999 @default.
- W3156210498 hasLocation W31562104981 @default.
- W3156210498 hasOpenAccess W3156210498 @default.
- W3156210498 hasPrimaryLocation W31562104981 @default.
- W3156210498 hasRelatedWork W11122729 @default.
- W3156210498 hasRelatedWork W11524489 @default.
- W3156210498 hasRelatedWork W12634471 @default.
- W3156210498 hasRelatedWork W13188192 @default.
- W3156210498 hasRelatedWork W14430987 @default.
- W3156210498 hasRelatedWork W4771408 @default.
- W3156210498 hasRelatedWork W6266756 @default.
- W3156210498 hasRelatedWork W6479499 @default.
- W3156210498 hasRelatedWork W8198582 @default.
- W3156210498 hasRelatedWork W9952751 @default.
- W3156210498 isParatext "false" @default.
- W3156210498 isRetracted "false" @default.
- W3156210498 magId "3156210498" @default.
- W3156210498 workType "book-chapter" @default.