Matches in SemOpenAlex for { <https://semopenalex.org/work/W3156223513> ?p ?o ?g. }
- W3156223513 endingPage "14" @default.
- W3156223513 startingPage "1" @default.
- W3156223513 abstract "Recently, the incidence of hypertension has significantly increased among young adults. While aerobic exercise intervention (AEI) has long been recognized as an effective treatment, individual differences in response to AEI can seriously influence clinicians' decisions. In particular, only a few studies have been conducted to predict the efficacy of AEI on lowering blood pressure (BP) in young hypertensive patients. As such, this paper aims to explore the implications of various cardiopulmonary metabolic indicators in the field by mining patients' cardiopulmonary exercise testing (CPET) data before making treatment plans. CPET data are collected breath by breath by using an oxygenation analyzer attached to a mask and then divided into four phases: resting, warm-up, exercise, and recovery. To mitigate the effects of redundant information and noise in the CPET data, a sparse representation classifier based on analytic dictionary learning was designed to accurately predict the individual responsiveness to AEI. Importantly, the experimental results showed that the model presented herein performed better than the baseline method based on BP change and traditional machine learning models. Furthermore, the data from the exercise phase were found to produce the best predictions compared with the data from other phases. This study paves the way towards the customization of personalized aerobic exercise programs for young hypertensive patients." @default.
- W3156223513 created "2021-04-26" @default.
- W3156223513 creator A5005864826 @default.
- W3156223513 creator A5016765491 @default.
- W3156223513 creator A5017519521 @default.
- W3156223513 creator A5021721710 @default.
- W3156223513 creator A5050997076 @default.
- W3156223513 creator A5066027793 @default.
- W3156223513 creator A5075061661 @default.
- W3156223513 creator A5076233649 @default.
- W3156223513 creator A5077015043 @default.
- W3156223513 creator A5079356028 @default.
- W3156223513 creator A5091074416 @default.
- W3156223513 date "2021-04-21" @default.
- W3156223513 modified "2023-10-11" @default.
- W3156223513 title "Utilizing Machine Learning Techniques to Predict the Efficacy of Aerobic Exercise Intervention on Young Hypertensive Patients Based on Cardiopulmonary Exercise Testing" @default.
- W3156223513 cites W1974774078 @default.
- W3156223513 cites W2009646648 @default.
- W3156223513 cites W2034769491 @default.
- W3156223513 cites W2035104901 @default.
- W3156223513 cites W2063978378 @default.
- W3156223513 cites W2068940392 @default.
- W3156223513 cites W2074054045 @default.
- W3156223513 cites W2074602210 @default.
- W3156223513 cites W2100556411 @default.
- W3156223513 cites W2120100419 @default.
- W3156223513 cites W2127271355 @default.
- W3156223513 cites W2129812935 @default.
- W3156223513 cites W2130187411 @default.
- W3156223513 cites W2160547390 @default.
- W3156223513 cites W2163398148 @default.
- W3156223513 cites W2166547175 @default.
- W3156223513 cites W2168800956 @default.
- W3156223513 cites W2169499193 @default.
- W3156223513 cites W2177834950 @default.
- W3156223513 cites W2205426635 @default.
- W3156223513 cites W2210181312 @default.
- W3156223513 cites W2410961113 @default.
- W3156223513 cites W2510434276 @default.
- W3156223513 cites W2516708336 @default.
- W3156223513 cites W2555077524 @default.
- W3156223513 cites W2598525681 @default.
- W3156223513 cites W2612256642 @default.
- W3156223513 cites W2615003157 @default.
- W3156223513 cites W2615671142 @default.
- W3156223513 cites W2625136688 @default.
- W3156223513 cites W2754703030 @default.
- W3156223513 cites W2775607616 @default.
- W3156223513 cites W2786161686 @default.
- W3156223513 cites W2789687647 @default.
- W3156223513 cites W2802250559 @default.
- W3156223513 cites W2888743398 @default.
- W3156223513 cites W2889954511 @default.
- W3156223513 cites W2892035503 @default.
- W3156223513 cites W2894318087 @default.
- W3156223513 cites W2900355037 @default.
- W3156223513 cites W2903940955 @default.
- W3156223513 cites W2920874415 @default.
- W3156223513 cites W2921500566 @default.
- W3156223513 cites W2953359447 @default.
- W3156223513 cites W2966358373 @default.
- W3156223513 cites W2988244882 @default.
- W3156223513 cites W2993852501 @default.
- W3156223513 cites W3005276697 @default.
- W3156223513 cites W3033449285 @default.
- W3156223513 cites W3091442504 @default.
- W3156223513 cites W3092990902 @default.
- W3156223513 cites W3093717581 @default.
- W3156223513 cites W3105543546 @default.
- W3156223513 doi "https://doi.org/10.1155/2021/6633832" @default.
- W3156223513 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8084649" @default.
- W3156223513 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33968353" @default.
- W3156223513 hasPublicationYear "2021" @default.
- W3156223513 type Work @default.
- W3156223513 sameAs 3156223513 @default.
- W3156223513 citedByCount "1" @default.
- W3156223513 crossrefType "journal-article" @default.
- W3156223513 hasAuthorship W3156223513A5005864826 @default.
- W3156223513 hasAuthorship W3156223513A5016765491 @default.
- W3156223513 hasAuthorship W3156223513A5017519521 @default.
- W3156223513 hasAuthorship W3156223513A5021721710 @default.
- W3156223513 hasAuthorship W3156223513A5050997076 @default.
- W3156223513 hasAuthorship W3156223513A5066027793 @default.
- W3156223513 hasAuthorship W3156223513A5075061661 @default.
- W3156223513 hasAuthorship W3156223513A5076233649 @default.
- W3156223513 hasAuthorship W3156223513A5077015043 @default.
- W3156223513 hasAuthorship W3156223513A5079356028 @default.
- W3156223513 hasAuthorship W3156223513A5091074416 @default.
- W3156223513 hasBestOaLocation W31562235131 @default.
- W3156223513 hasConcept C103038586 @default.
- W3156223513 hasConcept C119857082 @default.
- W3156223513 hasConcept C126322002 @default.
- W3156223513 hasConcept C154945302 @default.
- W3156223513 hasConcept C171687745 @default.
- W3156223513 hasConcept C1862650 @default.
- W3156223513 hasConcept C41008148 @default.
- W3156223513 hasConcept C71924100 @default.
- W3156223513 hasConcept C84393581 @default.