Matches in SemOpenAlex for { <https://semopenalex.org/work/W3156264695> ?p ?o ?g. }
- W3156264695 abstract "Abstract Background Deep learning algorithms significantly improve the accuracy of pathological image classification, but the accuracy of breast cancer classification using only single-mode pathological images still cannot meet the needs of clinical practice. Inspired by the real scenario of pathologists reading pathological images for diagnosis, we integrate pathological images and structured data extracted from clinical electronic medical record (EMR) to further improve the accuracy of breast cancer classification. Methods In this paper, we propose a new richer fusion network for the classification of benign and malignant breast cancer based on multimodal data. To make pathological image can be integrated more sufficient with structured EMR data, we proposed a method to extract richer multilevel feature representation of the pathological image from multiple convolutional layers. Meanwhile, to minimize the information loss for each modality before data fusion, we use the denoising autoencoder as a way to increase the low-dimensional structured EMR data to high-dimensional, instead of reducing the high-dimensional image data to low-dimensional before data fusion. In addition, denoising autoencoder naturally generalizes our method to make the accurate prediction with partially missing structured EMR data. Results The experimental results show that the proposed method is superior to the most advanced method in terms of the average classification accuracy (92.9%). In addition, we have released a dataset containing structured data from 185 patients that were extracted from EMR and 3764 paired pathological images of breast cancer, which can be publicly downloaded from http://ear.ict.ac.cn/?page_id=1663 . Conclusions We utilized a new richer fusion network to integrate highly heterogeneous data to leverage the structured EMR data to improve the accuracy of pathological image classification. Therefore, the application of automatic breast cancer classification algorithms in clinical practice becomes possible. Due to the generality of the proposed fusion method, it can be straightforwardly extended to the fusion of other structured data and unstructured data." @default.
- W3156264695 created "2021-04-26" @default.
- W3156264695 creator A5003979715 @default.
- W3156264695 creator A5011514919 @default.
- W3156264695 creator A5041880317 @default.
- W3156264695 creator A5049414195 @default.
- W3156264695 creator A5062042266 @default.
- W3156264695 creator A5064185915 @default.
- W3156264695 creator A5064794022 @default.
- W3156264695 creator A5069033866 @default.
- W3156264695 creator A5072992553 @default.
- W3156264695 creator A5074966358 @default.
- W3156264695 creator A5083487476 @default.
- W3156264695 date "2021-04-01" @default.
- W3156264695 modified "2023-10-12" @default.
- W3156264695 title "Richer fusion network for breast cancer classification based on multimodal data" @default.
- W3156264695 cites W1930528368 @default.
- W3156264695 cites W2025768430 @default.
- W3156264695 cites W2038420319 @default.
- W3156264695 cites W2117539524 @default.
- W3156264695 cites W2344480160 @default.
- W3156264695 cites W2526421605 @default.
- W3156264695 cites W2533800772 @default.
- W3156264695 cites W2554892747 @default.
- W3156264695 cites W2559588458 @default.
- W3156264695 cites W2592929672 @default.
- W3156264695 cites W2607333215 @default.
- W3156264695 cites W2609584387 @default.
- W3156264695 cites W2620578070 @default.
- W3156264695 cites W2752879928 @default.
- W3156264695 cites W2761668583 @default.
- W3156264695 cites W2767290858 @default.
- W3156264695 cites W2767547957 @default.
- W3156264695 cites W2768673271 @default.
- W3156264695 cites W2885824038 @default.
- W3156264695 cites W2911188335 @default.
- W3156264695 cites W2962934138 @default.
- W3156264695 cites W2963075078 @default.
- W3156264695 cites W2963395517 @default.
- W3156264695 cites W2963460810 @default.
- W3156264695 cites W2963897729 @default.
- W3156264695 cites W2963967185 @default.
- W3156264695 cites W3098150009 @default.
- W3156264695 cites W4231109964 @default.
- W3156264695 cites W4241071816 @default.
- W3156264695 doi "https://doi.org/10.1186/s12911-020-01340-6" @default.
- W3156264695 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8061018" @default.
- W3156264695 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33888098" @default.
- W3156264695 hasPublicationYear "2021" @default.
- W3156264695 type Work @default.
- W3156264695 sameAs 3156264695 @default.
- W3156264695 citedByCount "17" @default.
- W3156264695 countsByYear W31562646952022 @default.
- W3156264695 countsByYear W31562646952023 @default.
- W3156264695 crossrefType "journal-article" @default.
- W3156264695 hasAuthorship W3156264695A5003979715 @default.
- W3156264695 hasAuthorship W3156264695A5011514919 @default.
- W3156264695 hasAuthorship W3156264695A5041880317 @default.
- W3156264695 hasAuthorship W3156264695A5049414195 @default.
- W3156264695 hasAuthorship W3156264695A5062042266 @default.
- W3156264695 hasAuthorship W3156264695A5064185915 @default.
- W3156264695 hasAuthorship W3156264695A5064794022 @default.
- W3156264695 hasAuthorship W3156264695A5069033866 @default.
- W3156264695 hasAuthorship W3156264695A5072992553 @default.
- W3156264695 hasAuthorship W3156264695A5074966358 @default.
- W3156264695 hasAuthorship W3156264695A5083487476 @default.
- W3156264695 hasBestOaLocation W31562646951 @default.
- W3156264695 hasConcept C101738243 @default.
- W3156264695 hasConcept C108583219 @default.
- W3156264695 hasConcept C121608353 @default.
- W3156264695 hasConcept C126322002 @default.
- W3156264695 hasConcept C138885662 @default.
- W3156264695 hasConcept C153180895 @default.
- W3156264695 hasConcept C154945302 @default.
- W3156264695 hasConcept C2776401178 @default.
- W3156264695 hasConcept C2780226545 @default.
- W3156264695 hasConcept C41008148 @default.
- W3156264695 hasConcept C41895202 @default.
- W3156264695 hasConcept C530470458 @default.
- W3156264695 hasConcept C71924100 @default.
- W3156264695 hasConcept C81363708 @default.
- W3156264695 hasConceptScore W3156264695C101738243 @default.
- W3156264695 hasConceptScore W3156264695C108583219 @default.
- W3156264695 hasConceptScore W3156264695C121608353 @default.
- W3156264695 hasConceptScore W3156264695C126322002 @default.
- W3156264695 hasConceptScore W3156264695C138885662 @default.
- W3156264695 hasConceptScore W3156264695C153180895 @default.
- W3156264695 hasConceptScore W3156264695C154945302 @default.
- W3156264695 hasConceptScore W3156264695C2776401178 @default.
- W3156264695 hasConceptScore W3156264695C2780226545 @default.
- W3156264695 hasConceptScore W3156264695C41008148 @default.
- W3156264695 hasConceptScore W3156264695C41895202 @default.
- W3156264695 hasConceptScore W3156264695C530470458 @default.
- W3156264695 hasConceptScore W3156264695C71924100 @default.
- W3156264695 hasConceptScore W3156264695C81363708 @default.
- W3156264695 hasIssue "S1" @default.
- W3156264695 hasLocation W31562646951 @default.
- W3156264695 hasLocation W31562646952 @default.
- W3156264695 hasOpenAccess W3156264695 @default.
- W3156264695 hasPrimaryLocation W31562646951 @default.