Matches in SemOpenAlex for { <https://semopenalex.org/work/W3156313717> ?p ?o ?g. }
- W3156313717 abstract "In Low- and Middle- Income Countries (LMICs), machine learning (ML) and artificial intelligence (AI) offer attractive solutions to address the shortage of health care resources and improve the capacity of the local health care infrastructure. However, AI and ML should also be used cautiously, due to potential issues of fairness and algorithmic bias that may arise if not applied properly. Furthermore, populations in LMICs can be particularly vulnerable to bias and fairness in AI algorithms, due to a lack of technical capacity, existing social bias against minority groups, and a lack of legal protections. In order to address the need for better guidance within the context of global health, we describe three basic criteria (Appropriateness, Fairness, and Bias) that can be used to help evaluate the use of machine learning and AI systems: 1) APPROPRIATENESS is the process of deciding how the algorithm should be used in the local context, and properly matching the machine learning model to the target population; 2) BIAS is a systematic tendency in a model to favor one demographic group vs another, which can be mitigated but can lead to unfairness; and 3) FAIRNESS involves examining the impact on various demographic groups and choosing one of several mathematical definitions of group fairness that will adequately satisfy the desired set of legal, cultural, and ethical requirements. Finally, we illustrate how these principles can be applied using a case study of machine learning applied to the diagnosis and screening of pulmonary disease in Pune, India. We hope that these methods and principles can help guide researchers and organizations working in global health who are considering the use of machine learning and artificial intelligence." @default.
- W3156313717 created "2021-04-26" @default.
- W3156313717 creator A5030673309 @default.
- W3156313717 creator A5065184377 @default.
- W3156313717 creator A5082614315 @default.
- W3156313717 date "2021-04-15" @default.
- W3156313717 modified "2023-10-16" @default.
- W3156313717 title "Addressing Fairness, Bias, and Appropriate Use of Artificial Intelligence and Machine Learning in Global Health" @default.
- W3156313717 cites W1795144871 @default.
- W3156313717 cites W1961345416 @default.
- W3156313717 cites W2021577610 @default.
- W3156313717 cites W2099454382 @default.
- W3156313717 cites W2116984840 @default.
- W3156313717 cites W2148143831 @default.
- W3156313717 cites W2524910163 @default.
- W3156313717 cites W2533304691 @default.
- W3156313717 cites W2537763288 @default.
- W3156313717 cites W2789894922 @default.
- W3156313717 cites W2809504579 @default.
- W3156313717 cites W2905285619 @default.
- W3156313717 cites W2910231991 @default.
- W3156313717 cites W2943491685 @default.
- W3156313717 cites W2963116854 @default.
- W3156313717 cites W2974817986 @default.
- W3156313717 cites W2981869278 @default.
- W3156313717 cites W2990353513 @default.
- W3156313717 cites W2999309192 @default.
- W3156313717 cites W3014354950 @default.
- W3156313717 cites W3023997891 @default.
- W3156313717 cites W3035389563 @default.
- W3156313717 cites W3070377305 @default.
- W3156313717 cites W3088501995 @default.
- W3156313717 cites W3123103757 @default.
- W3156313717 doi "https://doi.org/10.3389/frai.2020.561802" @default.
- W3156313717 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8107824" @default.
- W3156313717 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33981989" @default.
- W3156313717 hasPublicationYear "2021" @default.
- W3156313717 type Work @default.
- W3156313717 sameAs 3156313717 @default.
- W3156313717 citedByCount "46" @default.
- W3156313717 countsByYear W31563137172021 @default.
- W3156313717 countsByYear W31563137172022 @default.
- W3156313717 countsByYear W31563137172023 @default.
- W3156313717 crossrefType "journal-article" @default.
- W3156313717 hasAuthorship W3156313717A5030673309 @default.
- W3156313717 hasAuthorship W3156313717A5065184377 @default.
- W3156313717 hasAuthorship W3156313717A5082614315 @default.
- W3156313717 hasBestOaLocation W31563137171 @default.
- W3156313717 hasConcept C111919701 @default.
- W3156313717 hasConcept C119857082 @default.
- W3156313717 hasConcept C142724271 @default.
- W3156313717 hasConcept C151730666 @default.
- W3156313717 hasConcept C154945302 @default.
- W3156313717 hasConcept C160735492 @default.
- W3156313717 hasConcept C162324750 @default.
- W3156313717 hasConcept C165064840 @default.
- W3156313717 hasConcept C177264268 @default.
- W3156313717 hasConcept C199360897 @default.
- W3156313717 hasConcept C2779343474 @default.
- W3156313717 hasConcept C2908647359 @default.
- W3156313717 hasConcept C41008148 @default.
- W3156313717 hasConcept C50522688 @default.
- W3156313717 hasConcept C71924100 @default.
- W3156313717 hasConcept C86803240 @default.
- W3156313717 hasConcept C98045186 @default.
- W3156313717 hasConcept C99454951 @default.
- W3156313717 hasConceptScore W3156313717C111919701 @default.
- W3156313717 hasConceptScore W3156313717C119857082 @default.
- W3156313717 hasConceptScore W3156313717C142724271 @default.
- W3156313717 hasConceptScore W3156313717C151730666 @default.
- W3156313717 hasConceptScore W3156313717C154945302 @default.
- W3156313717 hasConceptScore W3156313717C160735492 @default.
- W3156313717 hasConceptScore W3156313717C162324750 @default.
- W3156313717 hasConceptScore W3156313717C165064840 @default.
- W3156313717 hasConceptScore W3156313717C177264268 @default.
- W3156313717 hasConceptScore W3156313717C199360897 @default.
- W3156313717 hasConceptScore W3156313717C2779343474 @default.
- W3156313717 hasConceptScore W3156313717C2908647359 @default.
- W3156313717 hasConceptScore W3156313717C41008148 @default.
- W3156313717 hasConceptScore W3156313717C50522688 @default.
- W3156313717 hasConceptScore W3156313717C71924100 @default.
- W3156313717 hasConceptScore W3156313717C86803240 @default.
- W3156313717 hasConceptScore W3156313717C98045186 @default.
- W3156313717 hasConceptScore W3156313717C99454951 @default.
- W3156313717 hasLocation W31563137171 @default.
- W3156313717 hasLocation W31563137172 @default.
- W3156313717 hasLocation W31563137173 @default.
- W3156313717 hasLocation W31563137174 @default.
- W3156313717 hasOpenAccess W3156313717 @default.
- W3156313717 hasPrimaryLocation W31563137171 @default.
- W3156313717 hasRelatedWork W1972035260 @default.
- W3156313717 hasRelatedWork W2015462925 @default.
- W3156313717 hasRelatedWork W2097909533 @default.
- W3156313717 hasRelatedWork W2295467472 @default.
- W3156313717 hasRelatedWork W2794488505 @default.
- W3156313717 hasRelatedWork W2961085424 @default.
- W3156313717 hasRelatedWork W3046451053 @default.
- W3156313717 hasRelatedWork W3124422538 @default.
- W3156313717 hasRelatedWork W3125889879 @default.
- W3156313717 hasRelatedWork W4301594054 @default.