Matches in SemOpenAlex for { <https://semopenalex.org/work/W3156371574> ?p ?o ?g. }
- W3156371574 abstract "Estimating the heightmaps of buildings and vegetation in single remotely sensed images is a challenging problem. Effective solutions to this problem can comprise the stepping stone for solving complex and demanding problems that require 3D information of aerial imagery in the remote sensing discipline, which might be expensive or not feasible to require. We propose a task-focused Deep Learning (DL) model that takes advantage of the shadow map of a remotely sensed image to calculate its heightmap. The shadow is computed efficiently and does not add significant computation complexity. The model is trained with aerial images and their Lidar measurements, achieving superior performance on the task. We validate the model with a dataset covering a large area of Manchester, UK, as well as the 2018 IEEE GRSS Data Fusion Contest Lidar dataset. Our work suggests that the proposed DL architecture and the technique of injecting shadows information into the model are valuable for improving the heightmap estimation task for single remotely sensed imagery." @default.
- W3156371574 created "2021-04-26" @default.
- W3156371574 creator A5007428307 @default.
- W3156371574 creator A5041407031 @default.
- W3156371574 date "2021-04-22" @default.
- W3156371574 modified "2023-09-27" @default.
- W3156371574 title "Focusing on Shadows for Predicting Heightmaps from Single Remotely Sensed RGB Images with Deep Learning." @default.
- W3156371574 cites W125693051 @default.
- W3156371574 cites W1595770637 @default.
- W3156371574 cites W1677182931 @default.
- W3156371574 cites W1901129140 @default.
- W3156371574 cites W2053108635 @default.
- W3156371574 cites W2064559203 @default.
- W3156371574 cites W2092924074 @default.
- W3156371574 cites W2108598243 @default.
- W3156371574 cites W2150066425 @default.
- W3156371574 cites W2163605009 @default.
- W3156371574 cites W2171740948 @default.
- W3156371574 cites W2183341477 @default.
- W3156371574 cites W2194775991 @default.
- W3156371574 cites W2295107390 @default.
- W3156371574 cites W2296127945 @default.
- W3156371574 cites W2330981082 @default.
- W3156371574 cites W2431738724 @default.
- W3156371574 cites W2471962767 @default.
- W3156371574 cites W2476548250 @default.
- W3156371574 cites W2511730936 @default.
- W3156371574 cites W2517180603 @default.
- W3156371574 cites W2521868507 @default.
- W3156371574 cites W2609077090 @default.
- W3156371574 cites W2630837129 @default.
- W3156371574 cites W2771852828 @default.
- W3156371574 cites W2787931417 @default.
- W3156371574 cites W2790713095 @default.
- W3156371574 cites W2795995646 @default.
- W3156371574 cites W2806070179 @default.
- W3156371574 cites W2887114371 @default.
- W3156371574 cites W2887280559 @default.
- W3156371574 cites W2895435126 @default.
- W3156371574 cites W2899608214 @default.
- W3156371574 cites W2902202741 @default.
- W3156371574 cites W2907670226 @default.
- W3156371574 cites W2913897408 @default.
- W3156371574 cites W2943287822 @default.
- W3156371574 cites W2949117887 @default.
- W3156371574 cites W2950042022 @default.
- W3156371574 cites W2962880841 @default.
- W3156371574 cites W2962933129 @default.
- W3156371574 cites W2963591054 @default.
- W3156371574 cites W2963823954 @default.
- W3156371574 cites W2963876278 @default.
- W3156371574 cites W2963906250 @default.
- W3156371574 cites W2964121744 @default.
- W3156371574 cites W2984507463 @default.
- W3156371574 cites W3034253653 @default.
- W3156371574 cites W3037455594 @default.
- W3156371574 cites W3038634584 @default.
- W3156371574 cites W3047607466 @default.
- W3156371574 cites W3081162165 @default.
- W3156371574 cites W3081684346 @default.
- W3156371574 cites W3107364113 @default.
- W3156371574 cites W3107379492 @default.
- W3156371574 hasPublicationYear "2021" @default.
- W3156371574 type Work @default.
- W3156371574 sameAs 3156371574 @default.
- W3156371574 citedByCount "0" @default.
- W3156371574 crossrefType "posted-content" @default.
- W3156371574 hasAuthorship W3156371574A5007428307 @default.
- W3156371574 hasAuthorship W3156371574A5041407031 @default.
- W3156371574 hasConcept C108583219 @default.
- W3156371574 hasConcept C11413529 @default.
- W3156371574 hasConcept C117797892 @default.
- W3156371574 hasConcept C154945302 @default.
- W3156371574 hasConcept C15744967 @default.
- W3156371574 hasConcept C162324750 @default.
- W3156371574 hasConcept C187736073 @default.
- W3156371574 hasConcept C205649164 @default.
- W3156371574 hasConcept C2780451532 @default.
- W3156371574 hasConcept C31972630 @default.
- W3156371574 hasConcept C41008148 @default.
- W3156371574 hasConcept C45374587 @default.
- W3156371574 hasConcept C51399673 @default.
- W3156371574 hasConcept C542102704 @default.
- W3156371574 hasConcept C62649853 @default.
- W3156371574 hasConcept C82990744 @default.
- W3156371574 hasConceptScore W3156371574C108583219 @default.
- W3156371574 hasConceptScore W3156371574C11413529 @default.
- W3156371574 hasConceptScore W3156371574C117797892 @default.
- W3156371574 hasConceptScore W3156371574C154945302 @default.
- W3156371574 hasConceptScore W3156371574C15744967 @default.
- W3156371574 hasConceptScore W3156371574C162324750 @default.
- W3156371574 hasConceptScore W3156371574C187736073 @default.
- W3156371574 hasConceptScore W3156371574C205649164 @default.
- W3156371574 hasConceptScore W3156371574C2780451532 @default.
- W3156371574 hasConceptScore W3156371574C31972630 @default.
- W3156371574 hasConceptScore W3156371574C41008148 @default.
- W3156371574 hasConceptScore W3156371574C45374587 @default.
- W3156371574 hasConceptScore W3156371574C51399673 @default.
- W3156371574 hasConceptScore W3156371574C542102704 @default.
- W3156371574 hasConceptScore W3156371574C62649853 @default.