Matches in SemOpenAlex for { <https://semopenalex.org/work/W3156403194> ?p ?o ?g. }
- W3156403194 endingPage "12" @default.
- W3156403194 startingPage "1" @default.
- W3156403194 abstract "Several natural and human factors are responsible for the defacement of the external walls and tiles of buildings, and the related deterioration can be a public safety hazard. Therefore, active building maintenance and repair processes are essential for ensuring building sustainability. However, conventional inspection methods are time-, cost-, and labor-intensive processes. Therefore, herein, this study proposes a convolutional neural network (CNN) model for image-based automated detection and localization of key building defects (efflorescence, spalling, cracking, and defacement). Based on a pretrained CNN VGG-16 classifier, this model applies class activation mapping for object localization. After identifying its limitations in real-life applications, this study determined the model’s robustness and ability to accurately detect and localize defects in the external wall tiles of buildings. For real-time detection and localization, this study applied this model by using mobile devices and drones. The results show that the application of deep learning with UAV can effectively detect various kinds of external wall defects and improve the detection efficiency." @default.
- W3156403194 created "2021-04-26" @default.
- W3156403194 creator A5002095253 @default.
- W3156403194 creator A5050133633 @default.
- W3156403194 creator A5062855928 @default.
- W3156403194 creator A5073615718 @default.
- W3156403194 date "2021-04-19" @default.
- W3156403194 modified "2023-10-10" @default.
- W3156403194 title "Application of Deep Learning and Unmanned Aerial Vehicle on Building Maintenance" @default.
- W3156403194 cites W1485843859 @default.
- W3156403194 cites W1489970203 @default.
- W3156403194 cites W1971392959 @default.
- W3156403194 cites W1977854363 @default.
- W3156403194 cites W2031850322 @default.
- W3156403194 cites W2032670990 @default.
- W3156403194 cites W2037174685 @default.
- W3156403194 cites W2038642313 @default.
- W3156403194 cites W2043640786 @default.
- W3156403194 cites W2061314421 @default.
- W3156403194 cites W2064570579 @default.
- W3156403194 cites W2067686566 @default.
- W3156403194 cites W2071703809 @default.
- W3156403194 cites W2076562568 @default.
- W3156403194 cites W2076695685 @default.
- W3156403194 cites W2084187484 @default.
- W3156403194 cites W2087719865 @default.
- W3156403194 cites W2091149439 @default.
- W3156403194 cites W2111495242 @default.
- W3156403194 cites W2115772460 @default.
- W3156403194 cites W2131014857 @default.
- W3156403194 cites W2136329802 @default.
- W3156403194 cites W2156939183 @default.
- W3156403194 cites W2171362124 @default.
- W3156403194 cites W2194775991 @default.
- W3156403194 cites W2226581003 @default.
- W3156403194 cites W2309354969 @default.
- W3156403194 cites W2528849371 @default.
- W3156403194 cites W2598457882 @default.
- W3156403194 cites W2726120960 @default.
- W3156403194 cites W2741156113 @default.
- W3156403194 cites W2742412886 @default.
- W3156403194 cites W2746616475 @default.
- W3156403194 cites W2747367508 @default.
- W3156403194 cites W2755588152 @default.
- W3156403194 cites W2783670302 @default.
- W3156403194 cites W2849488218 @default.
- W3156403194 cites W2862109938 @default.
- W3156403194 cites W2884367402 @default.
- W3156403194 cites W2887597701 @default.
- W3156403194 cites W2889749348 @default.
- W3156403194 cites W2891519189 @default.
- W3156403194 cites W2900450643 @default.
- W3156403194 cites W2901517905 @default.
- W3156403194 cites W2902344595 @default.
- W3156403194 cites W2902915929 @default.
- W3156403194 cites W2933576624 @default.
- W3156403194 cites W2965127303 @default.
- W3156403194 cites W2970177739 @default.
- W3156403194 cites W2983902176 @default.
- W3156403194 cites W3010857226 @default.
- W3156403194 cites W3011931516 @default.
- W3156403194 cites W3024891216 @default.
- W3156403194 cites W3045822672 @default.
- W3156403194 cites W766814416 @default.
- W3156403194 cites W942253733 @default.
- W3156403194 cites W2741295899 @default.
- W3156403194 doi "https://doi.org/10.1155/2021/5598690" @default.
- W3156403194 hasPublicationYear "2021" @default.
- W3156403194 type Work @default.
- W3156403194 sameAs 3156403194 @default.
- W3156403194 citedByCount "7" @default.
- W3156403194 countsByYear W31564031942022 @default.
- W3156403194 countsByYear W31564031942023 @default.
- W3156403194 crossrefType "journal-article" @default.
- W3156403194 hasAuthorship W3156403194A5002095253 @default.
- W3156403194 hasAuthorship W3156403194A5050133633 @default.
- W3156403194 hasAuthorship W3156403194A5062855928 @default.
- W3156403194 hasAuthorship W3156403194A5073615718 @default.
- W3156403194 hasBestOaLocation W31564031941 @default.
- W3156403194 hasConcept C104317684 @default.
- W3156403194 hasConcept C108583219 @default.
- W3156403194 hasConcept C119857082 @default.
- W3156403194 hasConcept C153180895 @default.
- W3156403194 hasConcept C154945302 @default.
- W3156403194 hasConcept C185592680 @default.
- W3156403194 hasConcept C2776151529 @default.
- W3156403194 hasConcept C31972630 @default.
- W3156403194 hasConcept C41008148 @default.
- W3156403194 hasConcept C55493867 @default.
- W3156403194 hasConcept C63479239 @default.
- W3156403194 hasConcept C81363708 @default.
- W3156403194 hasConcept C95623464 @default.
- W3156403194 hasConceptScore W3156403194C104317684 @default.
- W3156403194 hasConceptScore W3156403194C108583219 @default.
- W3156403194 hasConceptScore W3156403194C119857082 @default.
- W3156403194 hasConceptScore W3156403194C153180895 @default.
- W3156403194 hasConceptScore W3156403194C154945302 @default.
- W3156403194 hasConceptScore W3156403194C185592680 @default.