Matches in SemOpenAlex for { <https://semopenalex.org/work/W3156423522> ?p ?o ?g. }
- W3156423522 abstract "Computer-assisted diagnosis is key for scaling up cervical cancer screening. However, current recognition algorithms perform poorly on whole slide image (WSI) analysis, fail to generalize for diverse staining and imaging, and show sub-optimal clinical-level verification. Here, we develop a progressive lesion cell recognition method combining low- and high-resolution WSIs to recommend lesion cells and a recurrent neural network-based WSI classification model to evaluate the lesion degree of WSIs. We train and validate our WSI analysis system on 3,545 patient-wise WSIs with 79,911 annotations from multiple hospitals and several imaging instruments. On multi-center independent test sets of 1,170 patient-wise WSIs, we achieve 93.5% Specificity and 95.1% Sensitivity for classifying slides, comparing favourably to the average performance of three independent cytopathologists, and obtain 88.5% true positive rate for highlighting the top 10 lesion cells on 447 positive slides. After deployment, our system recognizes a one giga-pixel WSI in about 1.5 min." @default.
- W3156423522 created "2021-04-26" @default.
- W3156423522 creator A5004231367 @default.
- W3156423522 creator A5008412521 @default.
- W3156423522 creator A5013264858 @default.
- W3156423522 creator A5017506900 @default.
- W3156423522 creator A5021765499 @default.
- W3156423522 creator A5022558329 @default.
- W3156423522 creator A5022575314 @default.
- W3156423522 creator A5031810848 @default.
- W3156423522 creator A5037692949 @default.
- W3156423522 creator A5037989560 @default.
- W3156423522 creator A5043389551 @default.
- W3156423522 creator A5044435034 @default.
- W3156423522 creator A5048981603 @default.
- W3156423522 creator A5049166738 @default.
- W3156423522 creator A5053231956 @default.
- W3156423522 creator A5055323092 @default.
- W3156423522 creator A5056084219 @default.
- W3156423522 creator A5058615051 @default.
- W3156423522 creator A5065691641 @default.
- W3156423522 creator A5066736391 @default.
- W3156423522 creator A5070407072 @default.
- W3156423522 creator A5071814939 @default.
- W3156423522 creator A5080042635 @default.
- W3156423522 date "2021-09-24" @default.
- W3156423522 modified "2023-10-10" @default.
- W3156423522 title "Robust whole slide image analysis for cervical cancer screening using deep learning" @default.
- W3156423522 cites W1489588344 @default.
- W3156423522 cites W1533233690 @default.
- W3156423522 cites W1537938464 @default.
- W3156423522 cites W1569073857 @default.
- W3156423522 cites W1906037527 @default.
- W3156423522 cites W1988905767 @default.
- W3156423522 cites W1998469791 @default.
- W3156423522 cites W2014294548 @default.
- W3156423522 cites W2033691141 @default.
- W3156423522 cites W2064926616 @default.
- W3156423522 cites W2072300346 @default.
- W3156423522 cites W2079527912 @default.
- W3156423522 cites W2094581205 @default.
- W3156423522 cites W2108598243 @default.
- W3156423522 cites W2111000080 @default.
- W3156423522 cites W2119477511 @default.
- W3156423522 cites W2138556740 @default.
- W3156423522 cites W2155813740 @default.
- W3156423522 cites W2194775991 @default.
- W3156423522 cites W2343237073 @default.
- W3156423522 cites W2592929672 @default.
- W3156423522 cites W2628702118 @default.
- W3156423522 cites W2725194261 @default.
- W3156423522 cites W2891729389 @default.
- W3156423522 cites W2919115771 @default.
- W3156423522 cites W2940629385 @default.
- W3156423522 cites W2952481429 @default.
- W3156423522 cites W2956228567 @default.
- W3156423522 cites W2964269074 @default.
- W3156423522 cites W2966296648 @default.
- W3156423522 cites W2980440074 @default.
- W3156423522 cites W2999091210 @default.
- W3156423522 cites W3026969527 @default.
- W3156423522 cites W3089090082 @default.
- W3156423522 cites W3119774682 @default.
- W3156423522 cites W3120290381 @default.
- W3156423522 cites W3127764565 @default.
- W3156423522 cites W3139012405 @default.
- W3156423522 cites W3156804249 @default.
- W3156423522 cites W3160261825 @default.
- W3156423522 cites W3171746194 @default.
- W3156423522 cites W600225349 @default.
- W3156423522 doi "https://doi.org/10.1038/s41467-021-25296-x" @default.
- W3156423522 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8463673" @default.
- W3156423522 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34561435" @default.
- W3156423522 hasPublicationYear "2021" @default.
- W3156423522 type Work @default.
- W3156423522 sameAs 3156423522 @default.
- W3156423522 citedByCount "46" @default.
- W3156423522 countsByYear W31564235222021 @default.
- W3156423522 countsByYear W31564235222022 @default.
- W3156423522 countsByYear W31564235222023 @default.
- W3156423522 crossrefType "journal-article" @default.
- W3156423522 hasAuthorship W3156423522A5004231367 @default.
- W3156423522 hasAuthorship W3156423522A5008412521 @default.
- W3156423522 hasAuthorship W3156423522A5013264858 @default.
- W3156423522 hasAuthorship W3156423522A5017506900 @default.
- W3156423522 hasAuthorship W3156423522A5021765499 @default.
- W3156423522 hasAuthorship W3156423522A5022558329 @default.
- W3156423522 hasAuthorship W3156423522A5022575314 @default.
- W3156423522 hasAuthorship W3156423522A5031810848 @default.
- W3156423522 hasAuthorship W3156423522A5037692949 @default.
- W3156423522 hasAuthorship W3156423522A5037989560 @default.
- W3156423522 hasAuthorship W3156423522A5043389551 @default.
- W3156423522 hasAuthorship W3156423522A5044435034 @default.
- W3156423522 hasAuthorship W3156423522A5048981603 @default.
- W3156423522 hasAuthorship W3156423522A5049166738 @default.
- W3156423522 hasAuthorship W3156423522A5053231956 @default.
- W3156423522 hasAuthorship W3156423522A5055323092 @default.
- W3156423522 hasAuthorship W3156423522A5056084219 @default.
- W3156423522 hasAuthorship W3156423522A5058615051 @default.
- W3156423522 hasAuthorship W3156423522A5065691641 @default.