Matches in SemOpenAlex for { <https://semopenalex.org/work/W3156427262> ?p ?o ?g. }
- W3156427262 endingPage "e25401" @default.
- W3156427262 startingPage "e25401" @default.
- W3156427262 abstract "Background The COVID-19 pandemic has highlighted the urgency of addressing an epidemic of obesity and associated inflammatory illnesses. Previous studies have demonstrated that interactions between single-nucleotide polymorphisms (SNPs) and lifestyle interventions such as food and exercise may vary metabolic outcomes, contributing to obesity. However, there is a paucity of research relating outcomes from digital therapeutics to the inclusion of genetic data in care interventions. Objective This study aims to describe and model the weight loss of participants enrolled in a precision digital weight loss program informed by the machine learning analysis of their data, including genomic data. It was hypothesized that weight loss models would exhibit a better fit when incorporating genomic data versus demographic and engagement variables alone. Methods A cohort of 393 participants enrolled in Digbi Health’s personalized digital care program for 120 days was analyzed retrospectively. The care protocol used participant data to inform precision coaching by mobile app and personal coach. Linear regression models were fit of weight loss (pounds lost and percentage lost) as a function of demographic and behavioral engagement variables. Genomic-enhanced models were built by adding 197 SNPs from participant genomic data as predictors and refitted using Lasso regression on SNPs for variable selection. Success or failure logistic regression models were also fit with and without genomic data. Results Overall, 72.0% (n=283) of the 393 participants in this cohort lost weight, whereas 17.3% (n=68) maintained stable weight. A total of 142 participants lost 5% bodyweight within 120 days. Models described the impact of demographic and clinical factors, behavioral engagement, and genomic risk on weight loss. Incorporating genomic predictors improved the mean squared error of weight loss models (pounds lost and percent) from 70 to 60 and 16 to 13, respectively. The logistic model improved the pseudo R2 value from 0.193 to 0.285. Gender, engagement, and specific SNPs were significantly associated with weight loss. SNPs within genes involved in metabolic pathways processing food and regulating fat storage were associated with weight loss in this cohort: rs17300539_G (insulin resistance and monounsaturated fat metabolism), rs2016520_C (BMI, waist circumference, and cholesterol metabolism), and rs4074995_A (calcium-potassium transport and serum calcium levels). The models described greater average weight loss for participants with more risk alleles. Notably, coaching for dietary modification was personalized to these genetic risks. Conclusions Including genomic information when modeling outcomes of a digital precision weight loss program greatly enhanced the model accuracy. Interpretable weight loss models indicated the efficacy of coaching informed by participants’ genomic risk, accompanied by active engagement of participants in their own success. Although large-scale validation is needed, our study preliminarily supports precision dietary interventions for weight loss using genetic risk, with digitally delivered recommendations alongside health coaching to improve intervention efficacy." @default.
- W3156427262 created "2021-04-26" @default.
- W3156427262 creator A5015303938 @default.
- W3156427262 creator A5017906669 @default.
- W3156427262 creator A5019786538 @default.
- W3156427262 creator A5028987840 @default.
- W3156427262 creator A5039772448 @default.
- W3156427262 creator A5043578391 @default.
- W3156427262 creator A5058607351 @default.
- W3156427262 creator A5063641622 @default.
- W3156427262 creator A5065671669 @default.
- W3156427262 creator A5081066201 @default.
- W3156427262 creator A5085150299 @default.
- W3156427262 date "2021-05-19" @default.
- W3156427262 modified "2023-10-17" @default.
- W3156427262 title "Leveraging Genomic Associations in Precision Digital Care for Weight Loss: Cohort Study" @default.
- W3156427262 cites W150962594 @default.
- W3156427262 cites W1511593276 @default.
- W3156427262 cites W1549312923 @default.
- W3156427262 cites W1847666774 @default.
- W3156427262 cites W1966149355 @default.
- W3156427262 cites W1966650637 @default.
- W3156427262 cites W1975771460 @default.
- W3156427262 cites W1976844911 @default.
- W3156427262 cites W1982966896 @default.
- W3156427262 cites W1989879035 @default.
- W3156427262 cites W1991443138 @default.
- W3156427262 cites W1993399595 @default.
- W3156427262 cites W1993629684 @default.
- W3156427262 cites W1998977949 @default.
- W3156427262 cites W2002232018 @default.
- W3156427262 cites W2002554863 @default.
- W3156427262 cites W2002848248 @default.
- W3156427262 cites W2004549986 @default.
- W3156427262 cites W2005016697 @default.
- W3156427262 cites W2008524521 @default.
- W3156427262 cites W2011001330 @default.
- W3156427262 cites W2012441815 @default.
- W3156427262 cites W2018495566 @default.
- W3156427262 cites W2021404095 @default.
- W3156427262 cites W2023234131 @default.
- W3156427262 cites W2025079391 @default.
- W3156427262 cites W2026637676 @default.
- W3156427262 cites W2031182381 @default.
- W3156427262 cites W2039153962 @default.
- W3156427262 cites W2039813041 @default.
- W3156427262 cites W2039847456 @default.
- W3156427262 cites W2048380404 @default.
- W3156427262 cites W2052517820 @default.
- W3156427262 cites W2053238868 @default.
- W3156427262 cites W2055475893 @default.
- W3156427262 cites W2063180918 @default.
- W3156427262 cites W2068328058 @default.
- W3156427262 cites W2073584727 @default.
- W3156427262 cites W2079266355 @default.
- W3156427262 cites W2082634767 @default.
- W3156427262 cites W2084493261 @default.
- W3156427262 cites W2089473585 @default.
- W3156427262 cites W2094194500 @default.
- W3156427262 cites W2094696938 @default.
- W3156427262 cites W2095317019 @default.
- W3156427262 cites W2099190065 @default.
- W3156427262 cites W2101610063 @default.
- W3156427262 cites W2102538757 @default.
- W3156427262 cites W2104651942 @default.
- W3156427262 cites W2108870105 @default.
- W3156427262 cites W2109245089 @default.
- W3156427262 cites W2109366467 @default.
- W3156427262 cites W2109550515 @default.
- W3156427262 cites W2110174452 @default.
- W3156427262 cites W2111348359 @default.
- W3156427262 cites W2112502488 @default.
- W3156427262 cites W2119117615 @default.
- W3156427262 cites W2120118206 @default.
- W3156427262 cites W2123931921 @default.
- W3156427262 cites W2124030977 @default.
- W3156427262 cites W2124508338 @default.
- W3156427262 cites W2124719611 @default.
- W3156427262 cites W2126237420 @default.
- W3156427262 cites W2130524028 @default.
- W3156427262 cites W2131249092 @default.
- W3156427262 cites W2131543898 @default.
- W3156427262 cites W2132750131 @default.
- W3156427262 cites W2133852929 @default.
- W3156427262 cites W2134783591 @default.
- W3156427262 cites W2138783639 @default.
- W3156427262 cites W2140166902 @default.
- W3156427262 cites W2141878810 @default.
- W3156427262 cites W2143454792 @default.
- W3156427262 cites W2147311167 @default.
- W3156427262 cites W2149200710 @default.
- W3156427262 cites W2149928947 @default.
- W3156427262 cites W2151025825 @default.
- W3156427262 cites W2158595637 @default.
- W3156427262 cites W2160710777 @default.
- W3156427262 cites W2162072565 @default.
- W3156427262 cites W2162258804 @default.
- W3156427262 cites W2163144326 @default.