Matches in SemOpenAlex for { <https://semopenalex.org/work/W3156451840> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W3156451840 endingPage "846-857" @default.
- W3156451840 startingPage "846-857" @default.
- W3156451840 abstract "In several medical vision implementations, segmentation and marking are also the weakest measures. This paper shows a system focused on watershed transformations, which are structured to solve popular problems in a number of applications and are controllable by parameter adaptation. Lung cancer identification, a system for segmenting cancer regions from CT images, a watershed algorithm for image segmentation, and brain tumour detection from MRI images are two of these modules introduced. Neural networks and Support Vector Machines are used to identify data utilising different GLCM features as well as certain mathematical features. We discuss the findings of both implementations in 2D MRI images of brain tumours and CT images of lung cancer to explain the algorithms' concepts and show their generic properties. Finally the rate of accuracy obtained is compared for ANN and SVM classification. The rate of accuracy is 100% for lung images and 96% for brain using SVM classifier. By experimental results the SVM performance is better and suitable in medical image classifications." @default.
- W3156451840 created "2021-04-26" @default.
- W3156451840 creator A5074638823 @default.
- W3156451840 creator A5091626299 @default.
- W3156451840 date "2021-03-01" @default.
- W3156451840 modified "2023-09-23" @default.
- W3156451840 title "Identification of Tumour in Lung and Brain using Segmentation Classification Technique" @default.
- W3156451840 cites W1972514162 @default.
- W3156451840 cites W2002139384 @default.
- W3156451840 cites W2085652537 @default.
- W3156451840 cites W2116999286 @default.
- W3156451840 cites W2163605009 @default.
- W3156451840 cites W2464708700 @default.
- W3156451840 cites W2552440462 @default.
- W3156451840 cites W2594257892 @default.
- W3156451840 hasPublicationYear "2021" @default.
- W3156451840 type Work @default.
- W3156451840 sameAs 3156451840 @default.
- W3156451840 citedByCount "0" @default.
- W3156451840 crossrefType "journal-article" @default.
- W3156451840 hasAuthorship W3156451840A5074638823 @default.
- W3156451840 hasAuthorship W3156451840A5091626299 @default.
- W3156451840 hasConcept C116834253 @default.
- W3156451840 hasConcept C12267149 @default.
- W3156451840 hasConcept C124504099 @default.
- W3156451840 hasConcept C153180895 @default.
- W3156451840 hasConcept C154945302 @default.
- W3156451840 hasConcept C199360897 @default.
- W3156451840 hasConcept C26713055 @default.
- W3156451840 hasConcept C31972630 @default.
- W3156451840 hasConcept C41008148 @default.
- W3156451840 hasConcept C50644808 @default.
- W3156451840 hasConcept C59822182 @default.
- W3156451840 hasConcept C86803240 @default.
- W3156451840 hasConcept C89600930 @default.
- W3156451840 hasConcept C95623464 @default.
- W3156451840 hasConceptScore W3156451840C116834253 @default.
- W3156451840 hasConceptScore W3156451840C12267149 @default.
- W3156451840 hasConceptScore W3156451840C124504099 @default.
- W3156451840 hasConceptScore W3156451840C153180895 @default.
- W3156451840 hasConceptScore W3156451840C154945302 @default.
- W3156451840 hasConceptScore W3156451840C199360897 @default.
- W3156451840 hasConceptScore W3156451840C26713055 @default.
- W3156451840 hasConceptScore W3156451840C31972630 @default.
- W3156451840 hasConceptScore W3156451840C41008148 @default.
- W3156451840 hasConceptScore W3156451840C50644808 @default.
- W3156451840 hasConceptScore W3156451840C59822182 @default.
- W3156451840 hasConceptScore W3156451840C86803240 @default.
- W3156451840 hasConceptScore W3156451840C89600930 @default.
- W3156451840 hasConceptScore W3156451840C95623464 @default.
- W3156451840 hasIssue "3" @default.
- W3156451840 hasLocation W31564518401 @default.
- W3156451840 hasOpenAccess W3156451840 @default.
- W3156451840 hasPrimaryLocation W31564518401 @default.
- W3156451840 hasRelatedWork W1673391334 @default.
- W3156451840 hasRelatedWork W177690616 @default.
- W3156451840 hasRelatedWork W2154074112 @default.
- W3156451840 hasRelatedWork W2265378931 @default.
- W3156451840 hasRelatedWork W2506363117 @default.
- W3156451840 hasRelatedWork W2514617197 @default.
- W3156451840 hasRelatedWork W2773164951 @default.
- W3156451840 hasRelatedWork W2783028492 @default.
- W3156451840 hasRelatedWork W2869733044 @default.
- W3156451840 hasRelatedWork W2902258141 @default.
- W3156451840 hasRelatedWork W2953868626 @default.
- W3156451840 hasRelatedWork W3021579684 @default.
- W3156451840 hasRelatedWork W3027786915 @default.
- W3156451840 hasRelatedWork W3043831225 @default.
- W3156451840 hasRelatedWork W3098827984 @default.
- W3156451840 hasRelatedWork W3130622801 @default.
- W3156451840 hasRelatedWork W3133526904 @default.
- W3156451840 hasRelatedWork W3173237072 @default.
- W3156451840 hasRelatedWork W3175638777 @default.
- W3156451840 hasRelatedWork W3186590366 @default.
- W3156451840 hasVolume "8" @default.
- W3156451840 isParatext "false" @default.
- W3156451840 isRetracted "false" @default.
- W3156451840 magId "3156451840" @default.
- W3156451840 workType "article" @default.