Matches in SemOpenAlex for { <https://semopenalex.org/work/W3156572054> ?p ?o ?g. }
- W3156572054 endingPage "107423" @default.
- W3156572054 startingPage "107423" @default.
- W3156572054 abstract "In the era of data deluge, the world is experiencing an intensive growth of Big data with complex structures. While processing of these data is a complex and labor-intensive process, a proper analysis of Big data leads to greater knowledge extraction. In this paper, Big data is used to predict high-risk factors of Diabetes Mellitus using a new integrated framework with four Hadoop clusters, which are developed to classify the data based on Multi-level MapReduce Fuzzy Classifier (MMR-FC) and MapReduce-Modified Density-Based Spatial Clustering of Applications with Noise (MR-MDBSCAN) algorithm. Big data concerning people’s food habits, physical activity are extracted from social media using the API’s provided. The MMR-FC takes place at three levels of index (Glycemic Index, Physical activity Index, Sleeping Pattern) values. The fuzzy rules are generated by the MMR-FC algorithm to predict the risk of Diabetes Mellitus using the data extracted. The result from MMR-FC is used as an input to the semantic location prediction framework to predict the high-risk zones of Diabetes Mellitus using the MR-MDBSCAN algorithm. The analysis shows that more than 55% of people are in a high-risk group with positive sentiments on the data extracted. More than 70% of food with a high Glycemic Index is usually consumed during Night and Early Evenings, which reveals that people consume food that has a high Glycemic Index during their sedentary slot and have irregular sleep practices. Around 70% of the unhealthiest dietary patterns are retrieved from urban hotspots such as Delhi, Cochin, Kolkata, and Chennai. From the results, it is evident that 55% of younger generations, users of social networking sites having high possibilities of Type II Diabetes Mellitus at large." @default.
- W3156572054 created "2021-04-26" @default.
- W3156572054 creator A5003692035 @default.
- W3156572054 creator A5068968196 @default.
- W3156572054 date "2021-09-01" @default.
- W3156572054 modified "2023-09-27" @default.
- W3156572054 title "An integrated multi-node Hadoop framework to predict high-risk factors of Diabetes Mellitus using a Multilevel MapReduce based Fuzzy Classifier (MMR-FC) and Modified DBSCAN algorithm" @default.
- W3156572054 cites W1966241942 @default.
- W3156572054 cites W2008803468 @default.
- W3156572054 cites W2011273513 @default.
- W3156572054 cites W2014496589 @default.
- W3156572054 cites W2015433512 @default.
- W3156572054 cites W2021916994 @default.
- W3156572054 cites W2041223402 @default.
- W3156572054 cites W2046499042 @default.
- W3156572054 cites W2056076776 @default.
- W3156572054 cites W2068160960 @default.
- W3156572054 cites W2071018780 @default.
- W3156572054 cites W2085964166 @default.
- W3156572054 cites W2098162425 @default.
- W3156572054 cites W2099269224 @default.
- W3156572054 cites W2125269912 @default.
- W3156572054 cites W2130363090 @default.
- W3156572054 cites W2134633904 @default.
- W3156572054 cites W2135498674 @default.
- W3156572054 cites W2145553696 @default.
- W3156572054 cites W2151485425 @default.
- W3156572054 cites W2152501795 @default.
- W3156572054 cites W2166706824 @default.
- W3156572054 cites W2171020334 @default.
- W3156572054 cites W2173213060 @default.
- W3156572054 cites W2470906225 @default.
- W3156572054 cites W2519706319 @default.
- W3156572054 cites W2726373792 @default.
- W3156572054 cites W2737566390 @default.
- W3156572054 cites W2764078585 @default.
- W3156572054 cites W2767940852 @default.
- W3156572054 cites W2769179409 @default.
- W3156572054 cites W2790718346 @default.
- W3156572054 cites W2795096716 @default.
- W3156572054 cites W2883618409 @default.
- W3156572054 cites W2884204303 @default.
- W3156572054 cites W2884801835 @default.
- W3156572054 cites W2887436939 @default.
- W3156572054 cites W2890651771 @default.
- W3156572054 cites W2891308053 @default.
- W3156572054 cites W2892479699 @default.
- W3156572054 cites W2899706481 @default.
- W3156572054 cites W2903778937 @default.
- W3156572054 cites W2963685694 @default.
- W3156572054 cites W3123712780 @default.
- W3156572054 doi "https://doi.org/10.1016/j.asoc.2021.107423" @default.
- W3156572054 hasPublicationYear "2021" @default.
- W3156572054 type Work @default.
- W3156572054 sameAs 3156572054 @default.
- W3156572054 citedByCount "4" @default.
- W3156572054 countsByYear W31565720542022 @default.
- W3156572054 countsByYear W31565720542023 @default.
- W3156572054 crossrefType "journal-article" @default.
- W3156572054 hasAuthorship W3156572054A5003692035 @default.
- W3156572054 hasAuthorship W3156572054A5068968196 @default.
- W3156572054 hasConcept C104047586 @default.
- W3156572054 hasConcept C11413529 @default.
- W3156572054 hasConcept C119857082 @default.
- W3156572054 hasConcept C124101348 @default.
- W3156572054 hasConcept C134018914 @default.
- W3156572054 hasConcept C154945302 @default.
- W3156572054 hasConcept C17212007 @default.
- W3156572054 hasConcept C2776652674 @default.
- W3156572054 hasConcept C2780473172 @default.
- W3156572054 hasConcept C41008148 @default.
- W3156572054 hasConcept C46576248 @default.
- W3156572054 hasConcept C555293320 @default.
- W3156572054 hasConcept C58166 @default.
- W3156572054 hasConcept C71924100 @default.
- W3156572054 hasConcept C73555534 @default.
- W3156572054 hasConcept C75684735 @default.
- W3156572054 hasConcept C95623464 @default.
- W3156572054 hasConceptScore W3156572054C104047586 @default.
- W3156572054 hasConceptScore W3156572054C11413529 @default.
- W3156572054 hasConceptScore W3156572054C119857082 @default.
- W3156572054 hasConceptScore W3156572054C124101348 @default.
- W3156572054 hasConceptScore W3156572054C134018914 @default.
- W3156572054 hasConceptScore W3156572054C154945302 @default.
- W3156572054 hasConceptScore W3156572054C17212007 @default.
- W3156572054 hasConceptScore W3156572054C2776652674 @default.
- W3156572054 hasConceptScore W3156572054C2780473172 @default.
- W3156572054 hasConceptScore W3156572054C41008148 @default.
- W3156572054 hasConceptScore W3156572054C46576248 @default.
- W3156572054 hasConceptScore W3156572054C555293320 @default.
- W3156572054 hasConceptScore W3156572054C58166 @default.
- W3156572054 hasConceptScore W3156572054C71924100 @default.
- W3156572054 hasConceptScore W3156572054C73555534 @default.
- W3156572054 hasConceptScore W3156572054C75684735 @default.
- W3156572054 hasConceptScore W3156572054C95623464 @default.
- W3156572054 hasLocation W31565720541 @default.
- W3156572054 hasOpenAccess W3156572054 @default.
- W3156572054 hasPrimaryLocation W31565720541 @default.