Matches in SemOpenAlex for { <https://semopenalex.org/work/W3156647903> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W3156647903 endingPage "1534" @default.
- W3156647903 startingPage "1534" @default.
- W3156647903 abstract "In order to effectively control the damage caused by surface cracks to a geological environment, we need to find a convenient, efficient, and accurate method to obtain crack information. The existing crack extraction methods based on unmanned air vehicle (UAV) images inevitably have some erroneous pixels because of the complexity of background information. At the same time, there are few researches on crack feature information. In view of this, this article proposes a surface crack extraction method based on machine learning of UAV images, the data preprocessing steps, and the content and calculation methods for crack feature information: length, width, direction, location, fractal dimension, number, crack rate, and dispersion rate. The results show that the method in this article can effectively avoid the interference by vegetation and soil crust. By introducing the concept of dispersion rate, the method combining crack rate and dispersion rate can describe the distribution characteristics of regional cracks more clearly. Compared to field survey data, the calculation result of the crack feature information in this article is close to the true value, which proves that this is a reliable method for obtaining quantitative crack feature information." @default.
- W3156647903 created "2021-04-26" @default.
- W3156647903 creator A5005263452 @default.
- W3156647903 creator A5017477509 @default.
- W3156647903 creator A5031108954 @default.
- W3156647903 creator A5043577481 @default.
- W3156647903 creator A5068429881 @default.
- W3156647903 creator A5085750996 @default.
- W3156647903 date "2021-04-16" @default.
- W3156647903 modified "2023-10-16" @default.
- W3156647903 title "The Surface Crack Extraction Method Based on Machine Learning of Image and Quantitative Feature Information Acquisition Method" @default.
- W3156647903 cites W1979234857 @default.
- W3156647903 cites W2019400639 @default.
- W3156647903 cites W2047739515 @default.
- W3156647903 cites W2062432103 @default.
- W3156647903 cites W2063169554 @default.
- W3156647903 cites W2072620800 @default.
- W3156647903 cites W2091806358 @default.
- W3156647903 cites W2125066595 @default.
- W3156647903 cites W2149064628 @default.
- W3156647903 cites W2227898105 @default.
- W3156647903 cites W2338395662 @default.
- W3156647903 cites W2558982348 @default.
- W3156647903 cites W2582498304 @default.
- W3156647903 cites W2612363743 @default.
- W3156647903 cites W2777963195 @default.
- W3156647903 cites W2794660981 @default.
- W3156647903 cites W2800343216 @default.
- W3156647903 cites W2802151877 @default.
- W3156647903 cites W2804379837 @default.
- W3156647903 cites W2886505872 @default.
- W3156647903 cites W2891195071 @default.
- W3156647903 cites W2934050530 @default.
- W3156647903 cites W2972686851 @default.
- W3156647903 cites W3024877932 @default.
- W3156647903 cites W3041974261 @default.
- W3156647903 cites W3101430794 @default.
- W3156647903 doi "https://doi.org/10.3390/rs13081534" @default.
- W3156647903 hasPublicationYear "2021" @default.
- W3156647903 type Work @default.
- W3156647903 sameAs 3156647903 @default.
- W3156647903 citedByCount "5" @default.
- W3156647903 countsByYear W31566479032022 @default.
- W3156647903 countsByYear W31566479032023 @default.
- W3156647903 crossrefType "journal-article" @default.
- W3156647903 hasAuthorship W3156647903A5005263452 @default.
- W3156647903 hasAuthorship W3156647903A5017477509 @default.
- W3156647903 hasAuthorship W3156647903A5031108954 @default.
- W3156647903 hasAuthorship W3156647903A5043577481 @default.
- W3156647903 hasAuthorship W3156647903A5068429881 @default.
- W3156647903 hasAuthorship W3156647903A5085750996 @default.
- W3156647903 hasBestOaLocation W31566479031 @default.
- W3156647903 hasConcept C134306372 @default.
- W3156647903 hasConcept C138885662 @default.
- W3156647903 hasConcept C154945302 @default.
- W3156647903 hasConcept C26546657 @default.
- W3156647903 hasConcept C2776401178 @default.
- W3156647903 hasConcept C33923547 @default.
- W3156647903 hasConcept C34736171 @default.
- W3156647903 hasConcept C40636538 @default.
- W3156647903 hasConcept C41008148 @default.
- W3156647903 hasConcept C41895202 @default.
- W3156647903 hasConcept C52622490 @default.
- W3156647903 hasConceptScore W3156647903C134306372 @default.
- W3156647903 hasConceptScore W3156647903C138885662 @default.
- W3156647903 hasConceptScore W3156647903C154945302 @default.
- W3156647903 hasConceptScore W3156647903C26546657 @default.
- W3156647903 hasConceptScore W3156647903C2776401178 @default.
- W3156647903 hasConceptScore W3156647903C33923547 @default.
- W3156647903 hasConceptScore W3156647903C34736171 @default.
- W3156647903 hasConceptScore W3156647903C40636538 @default.
- W3156647903 hasConceptScore W3156647903C41008148 @default.
- W3156647903 hasConceptScore W3156647903C41895202 @default.
- W3156647903 hasConceptScore W3156647903C52622490 @default.
- W3156647903 hasIssue "8" @default.
- W3156647903 hasLocation W31566479031 @default.
- W3156647903 hasOpenAccess W3156647903 @default.
- W3156647903 hasPrimaryLocation W31566479031 @default.
- W3156647903 hasRelatedWork W2126100045 @default.
- W3156647903 hasRelatedWork W2153420957 @default.
- W3156647903 hasRelatedWork W2368651402 @default.
- W3156647903 hasRelatedWork W2391959412 @default.
- W3156647903 hasRelatedWork W2546942002 @default.
- W3156647903 hasRelatedWork W2738771151 @default.
- W3156647903 hasRelatedWork W3212819941 @default.
- W3156647903 hasRelatedWork W4281689716 @default.
- W3156647903 hasRelatedWork W4308093944 @default.
- W3156647903 hasRelatedWork W4320802741 @default.
- W3156647903 hasVolume "13" @default.
- W3156647903 isParatext "false" @default.
- W3156647903 isRetracted "false" @default.
- W3156647903 magId "3156647903" @default.
- W3156647903 workType "article" @default.