Matches in SemOpenAlex for { <https://semopenalex.org/work/W3156681036> ?p ?o ?g. }
- W3156681036 endingPage "1625" @default.
- W3156681036 startingPage "1609" @default.
- W3156681036 abstract "This paper proposes harmonic vector analysis (HVA) based on a general algorithmic framework of audio blind source separation (BSS) that is also presented in this paper. BSS for a convolutive audio mixture is usually performed by multichannel linear filtering when the numbers of microphones and sources are equal (determined situation). This paper addresses such determined BSS based on batch processing. To estimate the demixing filters, effective modeling of the source signals is important. One successful example is independent vector analysis (IVA) that models the signals via co-occurrence among the frequency components in each source. To give more freedom to the source modeling, a general framework of determined BSS is presented in this paper. It is based on the plug-and-play scheme using a primal-dual splitting algorithm and enables us to model the source signals implicitly through a time-frequency mask. By using the proposed framework, determined BSS algorithms can be developed by designing masks that enhance the source signals. As an example of its application, we propose HVA by defining a time-frequency mask that enhances the harmonic structure of audio signals via sparsity of cepstrum. The experiments showed that HVA outperforms IVA and independent low-rank matrix analysis (ILRMA) for both speech and music signals. A MATLAB code is provided along with the paper for a reference." @default.
- W3156681036 created "2021-04-26" @default.
- W3156681036 creator A5034837951 @default.
- W3156681036 creator A5071479017 @default.
- W3156681036 date "2021-01-01" @default.
- W3156681036 modified "2023-09-29" @default.
- W3156681036 title "Determined BSS Based on Time-Frequency Masking and Its Application to Harmonic Vector Analysis" @default.
- W3156681036 cites W108815450 @default.
- W3156681036 cites W1482149378 @default.
- W3156681036 cites W1543386260 @default.
- W3156681036 cites W1845880232 @default.
- W3156681036 cites W1922442141 @default.
- W3156681036 cites W1967020502 @default.
- W3156681036 cites W1993212240 @default.
- W3156681036 cites W2000888362 @default.
- W3156681036 cites W2013288428 @default.
- W3156681036 cites W2013743275 @default.
- W3156681036 cites W2027884847 @default.
- W3156681036 cites W2039844283 @default.
- W3156681036 cites W2043317267 @default.
- W3156681036 cites W2054110507 @default.
- W3156681036 cites W205960364 @default.
- W3156681036 cites W2069713687 @default.
- W3156681036 cites W2072548008 @default.
- W3156681036 cites W2087416986 @default.
- W3156681036 cites W2090530235 @default.
- W3156681036 cites W2096855653 @default.
- W3156681036 cites W2098723113 @default.
- W3156681036 cites W2107570138 @default.
- W3156681036 cites W2114461480 @default.
- W3156681036 cites W2116766578 @default.
- W3156681036 cites W2122950831 @default.
- W3156681036 cites W2123649031 @default.
- W3156681036 cites W2127851351 @default.
- W3156681036 cites W2134642725 @default.
- W3156681036 cites W2159956319 @default.
- W3156681036 cites W2162646593 @default.
- W3156681036 cites W2165706388 @default.
- W3156681036 cites W2170768669 @default.
- W3156681036 cites W2217477878 @default.
- W3156681036 cites W2412956798 @default.
- W3156681036 cites W2529812697 @default.
- W3156681036 cites W2540419083 @default.
- W3156681036 cites W2620976957 @default.
- W3156681036 cites W2751523490 @default.
- W3156681036 cites W2801096420 @default.
- W3156681036 cites W2804917410 @default.
- W3156681036 cites W2903055851 @default.
- W3156681036 cites W2903219940 @default.
- W3156681036 cites W2937789396 @default.
- W3156681036 cites W2954049404 @default.
- W3156681036 cites W2962911378 @default.
- W3156681036 cites W2963375116 @default.
- W3156681036 cites W2963814976 @default.
- W3156681036 cites W2998251729 @default.
- W3156681036 cites W3011826053 @default.
- W3156681036 cites W3039928442 @default.
- W3156681036 cites W3096709315 @default.
- W3156681036 cites W3098595037 @default.
- W3156681036 cites W3102929934 @default.
- W3156681036 cites W4205213118 @default.
- W3156681036 cites W4244393449 @default.
- W3156681036 cites W87112183 @default.
- W3156681036 doi "https://doi.org/10.1109/taslp.2021.3073863" @default.
- W3156681036 hasPublicationYear "2021" @default.
- W3156681036 type Work @default.
- W3156681036 sameAs 3156681036 @default.
- W3156681036 citedByCount "14" @default.
- W3156681036 countsByYear W31566810362020 @default.
- W3156681036 countsByYear W31566810362021 @default.
- W3156681036 countsByYear W31566810362022 @default.
- W3156681036 countsByYear W31566810362023 @default.
- W3156681036 crossrefType "journal-article" @default.
- W3156681036 hasAuthorship W3156681036A5034837951 @default.
- W3156681036 hasAuthorship W3156681036A5071479017 @default.
- W3156681036 hasBestOaLocation W31566810361 @default.
- W3156681036 hasConcept C111919701 @default.
- W3156681036 hasConcept C11413529 @default.
- W3156681036 hasConcept C120317606 @default.
- W3156681036 hasConcept C121332964 @default.
- W3156681036 hasConcept C127162648 @default.
- W3156681036 hasConcept C127934551 @default.
- W3156681036 hasConcept C13895895 @default.
- W3156681036 hasConcept C24890656 @default.
- W3156681036 hasConcept C2776864781 @default.
- W3156681036 hasConcept C28490314 @default.
- W3156681036 hasConcept C41008148 @default.
- W3156681036 hasConcept C43126263 @default.
- W3156681036 hasConcept C45273575 @default.
- W3156681036 hasConcept C64922751 @default.
- W3156681036 hasConcept C76155785 @default.
- W3156681036 hasConcept C88485024 @default.
- W3156681036 hasConceptScore W3156681036C111919701 @default.
- W3156681036 hasConceptScore W3156681036C11413529 @default.
- W3156681036 hasConceptScore W3156681036C120317606 @default.
- W3156681036 hasConceptScore W3156681036C121332964 @default.
- W3156681036 hasConceptScore W3156681036C127162648 @default.
- W3156681036 hasConceptScore W3156681036C127934551 @default.