Matches in SemOpenAlex for { <https://semopenalex.org/work/W3156687462> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W3156687462 endingPage "E285" @default.
- W3156687462 startingPage "E285" @default.
- W3156687462 abstract "HomeRadiologyVol. 299, No. 3 PreviousNext CommunicationsFree AccessLetters to the EditorIs There a Relevant Imaging Time for Optimal Quantitative 89Zr-DFO-Daratumumab PET Imaging?Eric Laffon*,† , Roger Marthan*Eric Laffon*,† , Roger Marthan*Author AffiliationsUniversity Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, INSERM U-1045 and CHU de Bordeaux-F-33000 Bordeaux, FranceService de Médecine Nucléaire, Hôpital du Haut-Lévèque, avenue de Magellan, 33604 Pessac, Francee-mail: elaff[email protected]Eric Laffon*,† Roger Marthan*Published Online:Apr 20 2021https://doi.org/10.1148/radiol.2021204454MoreSectionsPDF ToolsImage ViewerAdd to favoritesCiteTrack CitationsPermissionsReprints ShareShare onFacebookTwitterLinked In Editor:Recently, Dr Ulaner and colleagues demonstrated efficient CD38-targeted immunologic PET imaging of multiple myeloma with native daratumumab labeled with the positron-emitting radionuclide zirconium 89 (89Zr) through the chelator deferoxamine (DFO), or 89Zr-DFO-daratumumab, in a murine model and in humans (1). Ten participants were administered 3 mg of 89Zr-DFO-daratumumab and an additional amount of either 17 mg or 47 mg of nonradiolabeled daratumumab, and they underwent four PET/CT scans during the next 8 days. The tracer input function was assessed, and (decay-corrected) standardized uptake value (SUV) was shown to increase with time in osseous-myeloma lesions, thus indicating irreversible tracer trapping (Table E1, Fig 3). The authors emphasized that the 78.4-hour half-life of 89Zr conveniently allows for imaging up to 8 days after administration.We suggest that a relevant imaging time might be considered within these 8 days for optimal quantitative 89Zr-DFO-daratumumab PET imaging in future clinical trials. Let us consider the rate of decay-uncorrected irreversibly trapped tracer activity concentration at steady state: dCTrapped(t)/dt = Ki × CBlood(t) – λ × CTrapped(t), where Ki is uptake-rate constant, CBlood(t) is input function, and λ is Log2/78.4. At peak time of CTrapped(t)-curve, dCTrapped(t)/dt = 0 then implies CTrapped(tpeak-uncorr)/CBlood(tpeak-uncorr) = Ki/λ, where tpeak-umcorr is peak time. Introducing this equality in the Patlak equation leads to CTissue(tpeak-uncorr)/CBlood(tpeakuncorr) = Ki/λ + Y0, where CTissue is total tissue activity concentration and Y0 is the y-intercept of the Patlak plot (2,3). This equation may also be written as SUVTissue(tpeakuncorr)/SUVBlood(tpeak-uncorr) = Ki/λ + Y0, where SUVTissue is the SUV of the tissue, because SUVTissue is proportional to CTissue (1). It is important to stress that the CTissue-to-CBlood ratio or the SUVTissue-to-SUVBlood ratio, where SUVBlood is the SUV of blood, cancels out the issue of either applying or not applying physical decay correction, whereas tpeak-uncorrrelates to decay-uncorrected data.We computed the decay-uncorrected CTrapped(t) curve by using the input function by Dr Ulaner and colleagues, which showed peak time at 72 hours after injection (1,4). As a result, SUVTissue (t = 72) may be considered proportional to Ki, when SUVBlood (t = 72) and Y0 are assumed a constant and negligible, respectively. Furthermore, when SUVBlood (t = 72) can be measured, Ki may be estimated more reliably than from SUVTissue (t = 72) only, by computing SUVTissue(t = 72)/SUVBlood(t = 72) and by using a mean value for Y0 (that remains to be assessed from further experiments) (5). Finally, it is worth noting that the tpeak-uncorr value may depend on the administered total antibody mass because Figure 4 in the article by Dr Ulaner and colleagues demonstrated that 89Zr-DFO-daratumumab input function is affected by physiologic splenic uptake (1).Disclosures of Conflicts of Interest: E.L. disclosed no relevant relationships. R.M. disclosed no relevant relationships.References1. Ulaner GA, Sobol NB, O’Donoghue JA, . CD38-targeted immuno-PET of multiple myeloma: from xenograft models to first-in-human imaging. Radiology 2020;295(3):606–615. Link, Google Scholar2. Patlak CS, Blasberg RG, Fenstermacher JD. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab 1983;3(1):1–7. Crossref, Medline, Google Scholar3. Laffon E, Marthan R. Is Patlak y-intercept a relevant metrics? Eur J Nucl Med Mol Imaging 2020. https://doi.org/10.1007/s00259-020-04954-0. Published online August 23, 2020. Google Scholar4. Laffon E, Calcagni ML, Galli G, . Comparison of three-parameter kinetic model analysis to standard Patlak's analysis in 18F-FDG PET imaging of lung cancer patients. EJNMMI Res 2018;8(1):24–32 [Published correction appears in EJNMMI Res 2019;9(1):30.]. Crossref, Medline, Google Scholar5. van den Hoff J, Lougovski A, Schramm G, . Correction of scan time dependence of standard uptake values in oncological PET. EJNMMI Res 2014;4(1):18–31. Crossref, Medline, Google ScholarArticle HistoryPublished online: Apr 20 2021Published in print: June 2021 FiguresReferencesRelatedDetailsCited ByAn abbreviated therapy-dosimetric equation for the companion diagnostic/therapeutic [64/67Cu]Cu-SARTATEEricLaffon, Henride Clermont, RogerMarthan2021 | EJNMMI Research, Vol. 11, No. 1Specific and Nonspecific Uptake in Quantitative 89Zr-Immuno-PETEricLaffon, RogerMarthan2021 | Journal of Nuclear Medicine, Vol. 62, No. 10Recommended Articles CD38-targeted Immuno-PET of Multiple Myeloma: From Xenograft Models to First-in-Human ImagingRadiology2020Volume: 295Issue: 3pp. 606-615Identification of HER2-Positive Metastases in Patients with HER2-Negative Primary Breast Cancer by Using HER2-targeted 89Zr-Pertuzumab PET/CTRadiology2020Volume: 296Issue: 2pp. 370-37818F-FDG PET Biomarkers Help Detect Early Metabolic Response to Irreversible Electroporation and Predict Therapeutic Outcomes in a Rat Liver Tumor ModelRadiology2017Volume: 287Issue: 1pp. 137-145In Vivo PET Assay of Tumor Glutamine Flux and Metabolism: In-Human Trial of 18F-(2S,4R)-4-FluoroglutamineRadiology2018Volume: 287Issue: 2pp. 667-675Intermanufacturer Comparison of Dual-Energy CT Iodine Quantification and Monochromatic Attenuation: A Phantom StudyRadiology2017Volume: 287Issue: 1pp. 224-234See More RSNA Education Exhibits Imaging Biomarkers in Targeted Therapies: From Quantitative Imaging to RadiomicsDigital Posters2019Safe Use Of Contrast Media In Breast Imaging; A Practical GuideDigital Posters2021Essentials of Theranostics: A Guide for Physicians and Medical PhysicistsDigital Posters2022 RSNA Case Collection Extramedullary plasmacytoma in the pancreasRSNA Case Collection2020Unicentric retroperitoneal Castleman's diseaseRSNA Case Collection2021Primary Calvarial Lymphoma RSNA Case Collection2021 Vol. 299, No. 3 Metrics Altmetric Score PDF download" @default.
- W3156687462 created "2021-04-26" @default.
- W3156687462 creator A5066385556 @default.
- W3156687462 creator A5069403003 @default.
- W3156687462 date "2021-06-01" @default.
- W3156687462 modified "2023-09-23" @default.
- W3156687462 title "Is There a Relevant Imaging Time for Optimal Quantitative 89Zr-DFO-Daratumumab PET Imaging?" @default.
- W3156687462 cites W2092078486 @default.
- W3156687462 cites W2113612612 @default.
- W3156687462 cites W2806151706 @default.
- W3156687462 cites W3014125522 @default.
- W3156687462 cites W3080924656 @default.
- W3156687462 doi "https://doi.org/10.1148/radiol.2021204454" @default.
- W3156687462 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33877920" @default.
- W3156687462 hasPublicationYear "2021" @default.
- W3156687462 type Work @default.
- W3156687462 sameAs 3156687462 @default.
- W3156687462 citedByCount "2" @default.
- W3156687462 countsByYear W31566874622021 @default.
- W3156687462 crossrefType "journal-article" @default.
- W3156687462 hasAuthorship W3156687462A5066385556 @default.
- W3156687462 hasAuthorship W3156687462A5069403003 @default.
- W3156687462 hasConcept C126322002 @default.
- W3156687462 hasConcept C161191863 @default.
- W3156687462 hasConcept C2775842073 @default.
- W3156687462 hasConcept C2776063141 @default.
- W3156687462 hasConcept C2776364478 @default.
- W3156687462 hasConcept C2781119759 @default.
- W3156687462 hasConcept C2989005 @default.
- W3156687462 hasConcept C3017724952 @default.
- W3156687462 hasConcept C3020510925 @default.
- W3156687462 hasConcept C41008148 @default.
- W3156687462 hasConcept C71924100 @default.
- W3156687462 hasConceptScore W3156687462C126322002 @default.
- W3156687462 hasConceptScore W3156687462C161191863 @default.
- W3156687462 hasConceptScore W3156687462C2775842073 @default.
- W3156687462 hasConceptScore W3156687462C2776063141 @default.
- W3156687462 hasConceptScore W3156687462C2776364478 @default.
- W3156687462 hasConceptScore W3156687462C2781119759 @default.
- W3156687462 hasConceptScore W3156687462C2989005 @default.
- W3156687462 hasConceptScore W3156687462C3017724952 @default.
- W3156687462 hasConceptScore W3156687462C3020510925 @default.
- W3156687462 hasConceptScore W3156687462C41008148 @default.
- W3156687462 hasConceptScore W3156687462C71924100 @default.
- W3156687462 hasIssue "3" @default.
- W3156687462 hasLocation W31566874621 @default.
- W3156687462 hasOpenAccess W3156687462 @default.
- W3156687462 hasPrimaryLocation W31566874621 @default.
- W3156687462 hasRelatedWork W1983141550 @default.
- W3156687462 hasRelatedWork W2037755209 @default.
- W3156687462 hasRelatedWork W2055717654 @default.
- W3156687462 hasRelatedWork W2070087024 @default.
- W3156687462 hasRelatedWork W2144454494 @default.
- W3156687462 hasRelatedWork W2155907708 @default.
- W3156687462 hasRelatedWork W2409917819 @default.
- W3156687462 hasRelatedWork W2731120814 @default.
- W3156687462 hasRelatedWork W2968434642 @default.
- W3156687462 hasRelatedWork W3156687462 @default.
- W3156687462 hasVolume "299" @default.
- W3156687462 isParatext "false" @default.
- W3156687462 isRetracted "false" @default.
- W3156687462 magId "3156687462" @default.
- W3156687462 workType "article" @default.