Matches in SemOpenAlex for { <https://semopenalex.org/work/W3156977102> ?p ?o ?g. }
- W3156977102 endingPage "e001752" @default.
- W3156977102 startingPage "e001752" @default.
- W3156977102 abstract "We present a radiomics-based model for predicting response to pembrolizumab in patients with advanced rare cancers.The study included 57 patients with advanced rare cancers who were enrolled in our phase II clinical trial of pembrolizumab. Tumor response was evaluated using Response Evaluation Criteria in Solid Tumors (RECIST) 1.1 and immune-related RECIST (irRECIST). Patients were categorized as 20 controlled disease (stable disease, partial response, or complete response) or 37 progressive disease). We used 3D-slicer to segment target lesions on standard-of-care, pretreatment contrast enhanced CT scans. We extracted 610 features (10 histogram-based features and 600 second-order texture features) from each volume of interest. Least absolute shrinkage and selection operator logistic regression was used to detect the most discriminatory features. Selected features were used to create a classification model, using XGBoost, for the prediction of tumor response to pembrolizumab. Leave-one-out cross-validation was performed to assess model performance.The 10 most relevant radiomics features were selected; XGBoost-based classification successfully differentiated between controlled disease (complete response, partial response, stable disease) and progressive disease with high accuracy, sensitivity, and specificity in patients assessed by RECIST (94.7%, 97.3%, and 90%, respectively; p<0.001) and in patients assessed by irRECIST (94.7%, 93.9%, and 95.8%, respectively; p<0.001). Additionally, the common features of the RECIST and irRECIST groups also highly predicted pembrolizumab response with accuracy, sensitivity, specificity, and p value of 94.7%, 97%, 90%, p<0.001% and 96%, 96%, 95%, p<0.001, respectively.Our radiomics-based signature identified imaging differences that predicted pembrolizumab response in patients with advanced rare cancer.Our radiomics-based signature identified imaging differences that predicted pembrolizumab response in patients with advanced rare cancer." @default.
- W3156977102 created "2021-04-26" @default.
- W3156977102 creator A5005436649 @default.
- W3156977102 creator A5008786567 @default.
- W3156977102 creator A5018798028 @default.
- W3156977102 creator A5033721349 @default.
- W3156977102 creator A5043497448 @default.
- W3156977102 creator A5043675371 @default.
- W3156977102 creator A5044942439 @default.
- W3156977102 creator A5053458784 @default.
- W3156977102 creator A5053460346 @default.
- W3156977102 creator A5062097723 @default.
- W3156977102 creator A5071750897 @default.
- W3156977102 creator A5072374777 @default.
- W3156977102 creator A5074506844 @default.
- W3156977102 creator A5076096235 @default.
- W3156977102 creator A5079762645 @default.
- W3156977102 creator A5082296679 @default.
- W3156977102 creator A5087117639 @default.
- W3156977102 creator A5090179091 @default.
- W3156977102 date "2021-04-01" @default.
- W3156977102 modified "2023-10-17" @default.
- W3156977102 title "Radiomics analysis for predicting pembrolizumab response in patients with advanced rare cancers" @default.
- W3156977102 cites W1940241680 @default.
- W3156977102 cites W2044465660 @default.
- W3156977102 cites W2100158834 @default.
- W3156977102 cites W2109485845 @default.
- W3156977102 cites W2117173606 @default.
- W3156977102 cites W2117438495 @default.
- W3156977102 cites W2125616358 @default.
- W3156977102 cites W2127227873 @default.
- W3156977102 cites W2128739912 @default.
- W3156977102 cites W2138134458 @default.
- W3156977102 cites W2145396043 @default.
- W3156977102 cites W2266111816 @default.
- W3156977102 cites W2289712604 @default.
- W3156977102 cites W2338494814 @default.
- W3156977102 cites W2339890238 @default.
- W3156977102 cites W2416791964 @default.
- W3156977102 cites W2527905628 @default.
- W3156977102 cites W2529484692 @default.
- W3156977102 cites W2768429453 @default.
- W3156977102 cites W2784063247 @default.
- W3156977102 cites W2800160190 @default.
- W3156977102 cites W2883650117 @default.
- W3156977102 cites W2885326465 @default.
- W3156977102 cites W2886088405 @default.
- W3156977102 cites W2887004395 @default.
- W3156977102 cites W2890276829 @default.
- W3156977102 cites W2905399995 @default.
- W3156977102 cites W2915944698 @default.
- W3156977102 cites W2923501617 @default.
- W3156977102 cites W2938774370 @default.
- W3156977102 cites W2981790403 @default.
- W3156977102 cites W2983529249 @default.
- W3156977102 cites W2992690696 @default.
- W3156977102 cites W3010680101 @default.
- W3156977102 cites W3032427879 @default.
- W3156977102 cites W3102476541 @default.
- W3156977102 doi "https://doi.org/10.1136/jitc-2020-001752" @default.
- W3156977102 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8051405" @default.
- W3156977102 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33849924" @default.
- W3156977102 hasPublicationYear "2021" @default.
- W3156977102 type Work @default.
- W3156977102 sameAs 3156977102 @default.
- W3156977102 citedByCount "28" @default.
- W3156977102 countsByYear W31569771022021 @default.
- W3156977102 countsByYear W31569771022022 @default.
- W3156977102 countsByYear W31569771022023 @default.
- W3156977102 crossrefType "journal-article" @default.
- W3156977102 hasAuthorship W3156977102A5005436649 @default.
- W3156977102 hasAuthorship W3156977102A5008786567 @default.
- W3156977102 hasAuthorship W3156977102A5018798028 @default.
- W3156977102 hasAuthorship W3156977102A5033721349 @default.
- W3156977102 hasAuthorship W3156977102A5043497448 @default.
- W3156977102 hasAuthorship W3156977102A5043675371 @default.
- W3156977102 hasAuthorship W3156977102A5044942439 @default.
- W3156977102 hasAuthorship W3156977102A5053458784 @default.
- W3156977102 hasAuthorship W3156977102A5053460346 @default.
- W3156977102 hasAuthorship W3156977102A5062097723 @default.
- W3156977102 hasAuthorship W3156977102A5071750897 @default.
- W3156977102 hasAuthorship W3156977102A5072374777 @default.
- W3156977102 hasAuthorship W3156977102A5074506844 @default.
- W3156977102 hasAuthorship W3156977102A5076096235 @default.
- W3156977102 hasAuthorship W3156977102A5079762645 @default.
- W3156977102 hasAuthorship W3156977102A5082296679 @default.
- W3156977102 hasAuthorship W3156977102A5087117639 @default.
- W3156977102 hasAuthorship W3156977102A5090179091 @default.
- W3156977102 hasBestOaLocation W31569771021 @default.
- W3156977102 hasConcept C121608353 @default.
- W3156977102 hasConcept C126322002 @default.
- W3156977102 hasConcept C126838900 @default.
- W3156977102 hasConcept C143998085 @default.
- W3156977102 hasConcept C151956035 @default.
- W3156977102 hasConcept C2777701055 @default.
- W3156977102 hasConcept C2778559731 @default.
- W3156977102 hasConcept C2778822529 @default.
- W3156977102 hasConcept C2779134260 @default.