Matches in SemOpenAlex for { <https://semopenalex.org/work/W3157050624> ?p ?o ?g. }
- W3157050624 abstract "In statistical learning, identifying underlying structures of true target functions based on observed data plays a crucial role to facilitate subsequent modeling and analysis. Unlike most of those existing methods that focus on some specific settings under certain model assumptions, this paper proposes a general and novel framework for recovering true structures of target functions by using unstructured M-regression in a reproducing kernel Hilbert space (RKHS). The proposed framework is inspired by the fact that gradient functions can be employed as a valid tool to learn underlying structures, including sparse learning, interaction selection and model identification, and it is easy to implement by taking advantage of the nice properties of the RKHS. More importantly, it admits a wide range of loss functions, and thus includes many commonly used methods, such as mean regression, quantile regression, likelihood-based classification, and margin-based classification, which is also computationally efficient by solving convex optimization tasks. The asymptotic results of the proposed framework are established within a rich family of loss functions without any explicit model specifications. The superior performance of the proposed framework is also demonstrated by a variety of simulated examples and a real case study." @default.
- W3157050624 created "2021-05-10" @default.
- W3157050624 creator A5012771471 @default.
- W3157050624 creator A5043907454 @default.
- W3157050624 creator A5051771646 @default.
- W3157050624 date "2019-01-03" @default.
- W3157050624 modified "2023-09-27" @default.
- W3157050624 title "Structure learning via unstructured kernel-based M-regression" @default.
- W3157050624 cites W137628093 @default.
- W3157050624 cites W1538049996 @default.
- W3157050624 cites W1604938182 @default.
- W3157050624 cites W1659523443 @default.
- W3157050624 cites W1964173605 @default.
- W3157050624 cites W1970781863 @default.
- W3157050624 cites W1978285162 @default.
- W3157050624 cites W1994655188 @default.
- W3157050624 cites W1999132268 @default.
- W3157050624 cites W2002414568 @default.
- W3157050624 cites W2012309718 @default.
- W3157050624 cites W2036163871 @default.
- W3157050624 cites W2043182541 @default.
- W3157050624 cites W2056938357 @default.
- W3157050624 cites W2076349866 @default.
- W3157050624 cites W2080726496 @default.
- W3157050624 cites W2093019316 @default.
- W3157050624 cites W2099396088 @default.
- W3157050624 cites W2107194942 @default.
- W3157050624 cites W2109445534 @default.
- W3157050624 cites W2112090892 @default.
- W3157050624 cites W2123696247 @default.
- W3157050624 cites W2154560360 @default.
- W3157050624 cites W2154572047 @default.
- W3157050624 cites W2164092415 @default.
- W3157050624 cites W2164707709 @default.
- W3157050624 cites W2167250202 @default.
- W3157050624 cites W2168941962 @default.
- W3157050624 cites W2296319761 @default.
- W3157050624 cites W2317235261 @default.
- W3157050624 cites W2402379528 @default.
- W3157050624 cites W2405330762 @default.
- W3157050624 cites W2472661117 @default.
- W3157050624 cites W2541641452 @default.
- W3157050624 cites W2581127600 @default.
- W3157050624 cites W2605428180 @default.
- W3157050624 cites W2606385713 @default.
- W3157050624 cites W2617459384 @default.
- W3157050624 cites W2706069792 @default.
- W3157050624 cites W2795723870 @default.
- W3157050624 cites W2800838101 @default.
- W3157050624 cites W2884048968 @default.
- W3157050624 cites W2885146565 @default.
- W3157050624 cites W2907134310 @default.
- W3157050624 cites W2962818398 @default.
- W3157050624 cites W2963245453 @default.
- W3157050624 cites W2963927498 @default.
- W3157050624 cites W2964150627 @default.
- W3157050624 cites W2964177647 @default.
- W3157050624 cites W2964325858 @default.
- W3157050624 cites W2965676676 @default.
- W3157050624 cites W2997278068 @default.
- W3157050624 cites W3085587046 @default.
- W3157050624 cites W3102233038 @default.
- W3157050624 cites W3102479286 @default.
- W3157050624 cites W3103790796 @default.
- W3157050624 cites W3126888773 @default.
- W3157050624 cites W2912674557 @default.
- W3157050624 hasPublicationYear "2019" @default.
- W3157050624 type Work @default.
- W3157050624 sameAs 3157050624 @default.
- W3157050624 citedByCount "0" @default.
- W3157050624 crossrefType "posted-content" @default.
- W3157050624 hasAuthorship W3157050624A5012771471 @default.
- W3157050624 hasAuthorship W3157050624A5043907454 @default.
- W3157050624 hasAuthorship W3157050624A5051771646 @default.
- W3157050624 hasConcept C105795698 @default.
- W3157050624 hasConcept C114614502 @default.
- W3157050624 hasConcept C119857082 @default.
- W3157050624 hasConcept C122280245 @default.
- W3157050624 hasConcept C12267149 @default.
- W3157050624 hasConcept C126255220 @default.
- W3157050624 hasConcept C134306372 @default.
- W3157050624 hasConcept C154945302 @default.
- W3157050624 hasConcept C159985019 @default.
- W3157050624 hasConcept C192562407 @default.
- W3157050624 hasConcept C204323151 @default.
- W3157050624 hasConcept C33923547 @default.
- W3157050624 hasConcept C41008148 @default.
- W3157050624 hasConcept C62799726 @default.
- W3157050624 hasConcept C74193536 @default.
- W3157050624 hasConcept C774472 @default.
- W3157050624 hasConcept C80884492 @default.
- W3157050624 hasConcept C83546350 @default.
- W3157050624 hasConceptScore W3157050624C105795698 @default.
- W3157050624 hasConceptScore W3157050624C114614502 @default.
- W3157050624 hasConceptScore W3157050624C119857082 @default.
- W3157050624 hasConceptScore W3157050624C122280245 @default.
- W3157050624 hasConceptScore W3157050624C12267149 @default.
- W3157050624 hasConceptScore W3157050624C126255220 @default.
- W3157050624 hasConceptScore W3157050624C134306372 @default.
- W3157050624 hasConceptScore W3157050624C154945302 @default.