Matches in SemOpenAlex for { <https://semopenalex.org/work/W3157057800> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W3157057800 endingPage "271" @default.
- W3157057800 startingPage "261" @default.
- W3157057800 abstract "In this paper, we consider the following variations of the Line Segment Disk Cover (LSDC) problem. LSDC-H: In this version of LSDC problem, we are given a set S={s1,s2,…,sn} of n horizontal line segments of arbitrary length and an integer k(≥1). Our aim is to cover all segments in S with k disks of minimum radius centered at arbitrary points in the plane. LSDC-A: In this version of LSDC problem, we are given a set S={s1,s2,…,sn} of n line segments of arbitrary length with arbitrary orientation and an integer k(≥1). Our aim is to cover all segments in S with k disks of minimum radius centered at arbitrary points in the plane. LSDC-D: In the discrete version of LSDC problem, we are given a set S={s1,s2,…,sn} of n line segments of arbitrary length with arbitrary orientation and a set D={d1,d2,…,dm} of m disks of unit radius. Our aim is to cover all segments in S with the minimum number of disks in D i.e., find D′ such that S⊂⋃d∈D′d, where D′⊆D is of minimum cardinality. For LSDC-H and LSDC-A problems, we propose (1+ε)-factor approximation algorithms, which run in O((max{4δ−2,1})kn(|logropt|+log⌈1ρ⌉)) time and O((max{4δ−2,1})knlogn(|logropt|+log⌈1ρ⌉)) time, respectively, where ropt is the minimum radius of k disks which cover all segments in S, and δ>0, ρ>0 and ε>0 are fixed constants such that ε≥(δ+δρ+ρ). For LSDC-D problem, we propose a (1+ε)-factor approximation algorithm (PTAS), which runs in O(m2(82ε)2+3+m2n) time, where 0<ε≤2, and a (9+ε)-factor approximation algorithm, which runs in O(m(5+18ε)logm+m2n) time, where 0<ε≤6. For LSDC-D problem, we also have developed a faster approximation algorithm based on a simple greedy strategy. The running time and the approximation factor of the greedy algorithm are O(k(mn+mlogm)) and δ1δk, respectively, where k is the output size, and δ1 and δk are the largest sums of lengths of parts of line segments that lie within a disk in the first and the last (kth) iteration of the greedy algorithm, respectively." @default.
- W3157057800 created "2021-05-10" @default.
- W3157057800 creator A5052570333 @default.
- W3157057800 date "2021-12-01" @default.
- W3157057800 modified "2023-10-14" @default.
- W3157057800 title "Line segment disk cover" @default.
- W3157057800 cites W1539563432 @default.
- W3157057800 cites W1546096012 @default.
- W3157057800 cites W1607840687 @default.
- W3157057800 cites W1998230089 @default.
- W3157057800 cites W1998920351 @default.
- W3157057800 cites W2018541722 @default.
- W3157057800 cites W2021544892 @default.
- W3157057800 cites W2022671649 @default.
- W3157057800 cites W2079936333 @default.
- W3157057800 cites W2106734202 @default.
- W3157057800 cites W2133311553 @default.
- W3157057800 cites W2781687597 @default.
- W3157057800 cites W2783037871 @default.
- W3157057800 cites W2914405352 @default.
- W3157057800 cites W3103288814 @default.
- W3157057800 doi "https://doi.org/10.1016/j.dam.2021.04.019" @default.
- W3157057800 hasPublicationYear "2021" @default.
- W3157057800 type Work @default.
- W3157057800 sameAs 3157057800 @default.
- W3157057800 citedByCount "2" @default.
- W3157057800 countsByYear W31570578002021 @default.
- W3157057800 crossrefType "journal-article" @default.
- W3157057800 hasAuthorship W3157057800A5052570333 @default.
- W3157057800 hasConcept C114614502 @default.
- W3157057800 hasConcept C124101348 @default.
- W3157057800 hasConcept C127413603 @default.
- W3157057800 hasConcept C17825722 @default.
- W3157057800 hasConcept C178635117 @default.
- W3157057800 hasConcept C182124507 @default.
- W3157057800 hasConcept C198352243 @default.
- W3157057800 hasConcept C199360897 @default.
- W3157057800 hasConcept C2524010 @default.
- W3157057800 hasConcept C2780428219 @default.
- W3157057800 hasConcept C33923547 @default.
- W3157057800 hasConcept C38652104 @default.
- W3157057800 hasConcept C41008148 @default.
- W3157057800 hasConcept C78519656 @default.
- W3157057800 hasConcept C87117476 @default.
- W3157057800 hasConcept C97137487 @default.
- W3157057800 hasConceptScore W3157057800C114614502 @default.
- W3157057800 hasConceptScore W3157057800C124101348 @default.
- W3157057800 hasConceptScore W3157057800C127413603 @default.
- W3157057800 hasConceptScore W3157057800C17825722 @default.
- W3157057800 hasConceptScore W3157057800C178635117 @default.
- W3157057800 hasConceptScore W3157057800C182124507 @default.
- W3157057800 hasConceptScore W3157057800C198352243 @default.
- W3157057800 hasConceptScore W3157057800C199360897 @default.
- W3157057800 hasConceptScore W3157057800C2524010 @default.
- W3157057800 hasConceptScore W3157057800C2780428219 @default.
- W3157057800 hasConceptScore W3157057800C33923547 @default.
- W3157057800 hasConceptScore W3157057800C38652104 @default.
- W3157057800 hasConceptScore W3157057800C41008148 @default.
- W3157057800 hasConceptScore W3157057800C78519656 @default.
- W3157057800 hasConceptScore W3157057800C87117476 @default.
- W3157057800 hasConceptScore W3157057800C97137487 @default.
- W3157057800 hasLocation W31570578001 @default.
- W3157057800 hasOpenAccess W3157057800 @default.
- W3157057800 hasPrimaryLocation W31570578001 @default.
- W3157057800 hasRelatedWork W1179244155 @default.
- W3157057800 hasRelatedWork W2024680387 @default.
- W3157057800 hasRelatedWork W2080188430 @default.
- W3157057800 hasRelatedWork W2140952994 @default.
- W3157057800 hasRelatedWork W2151692582 @default.
- W3157057800 hasRelatedWork W2359803299 @default.
- W3157057800 hasRelatedWork W2793745936 @default.
- W3157057800 hasRelatedWork W2942906518 @default.
- W3157057800 hasRelatedWork W3098671307 @default.
- W3157057800 hasRelatedWork W3173107589 @default.
- W3157057800 hasVolume "305" @default.
- W3157057800 isParatext "false" @default.
- W3157057800 isRetracted "false" @default.
- W3157057800 magId "3157057800" @default.
- W3157057800 workType "article" @default.