Matches in SemOpenAlex for { <https://semopenalex.org/work/W3157132007> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W3157132007 abstract "Advancing models for accurate estimation of food production is essential for policymaking and managing national plans of action for food security. This research proposes two machine learning models for the prediction of food production. The adaptive network-based fuzzy inference system (ANFIS) and multilayer perceptron (MLP) methods are used to advance the prediction models. In the present study, two variables of livestock production and agricultural production were considered as the source of food production. Three variables were used to evaluate livestock production, namely livestock yield, live animals, and animal slaughtered, and two variables were used to assess agricultural production, namely agricultural production yields and losses. Iran was selected as the case study of the current study. Therefore, time-series data related to livestock and agricultural productions in Iran from 1961 to 2017 have been collected from the FAOSTAT database. First, 70% of this data was used to train ANFIS and MLP, and the remaining 30% of the data was used to test the models. The results disclosed that the ANFIS model with Generalized bell-shaped (Gbell) built-in membership functions has the lowest error level in predicting food production. The findings of this study provide a suitable tool for policymakers who can use this model and predict the future of food production to provide a proper plan for the future of food security and food supply for the next generations." @default.
- W3157132007 created "2021-05-10" @default.
- W3157132007 creator A5009042729 @default.
- W3157132007 creator A5018750194 @default.
- W3157132007 creator A5047157170 @default.
- W3157132007 creator A5049714409 @default.
- W3157132007 creator A5072746309 @default.
- W3157132007 date "2021-04-23" @default.
- W3157132007 modified "2023-09-26" @default.
- W3157132007 title "Prediction of Food Production Using Machine Learning Algorithms of Multilayer Perceptron and ANFIS" @default.
- W3157132007 doi "https://doi.org/10.20944/preprints202104.0628.v1" @default.
- W3157132007 hasPublicationYear "2021" @default.
- W3157132007 type Work @default.
- W3157132007 sameAs 3157132007 @default.
- W3157132007 citedByCount "0" @default.
- W3157132007 crossrefType "posted-content" @default.
- W3157132007 hasAuthorship W3157132007A5009042729 @default.
- W3157132007 hasAuthorship W3157132007A5018750194 @default.
- W3157132007 hasAuthorship W3157132007A5047157170 @default.
- W3157132007 hasAuthorship W3157132007A5049714409 @default.
- W3157132007 hasAuthorship W3157132007A5072746309 @default.
- W3157132007 hasBestOaLocation W31571320071 @default.
- W3157132007 hasConcept C112964050 @default.
- W3157132007 hasConcept C11413529 @default.
- W3157132007 hasConcept C118518473 @default.
- W3157132007 hasConcept C119857082 @default.
- W3157132007 hasConcept C139719470 @default.
- W3157132007 hasConcept C154945302 @default.
- W3157132007 hasConcept C162324750 @default.
- W3157132007 hasConcept C166957645 @default.
- W3157132007 hasConcept C179717631 @default.
- W3157132007 hasConcept C185592680 @default.
- W3157132007 hasConcept C186108316 @default.
- W3157132007 hasConcept C195975749 @default.
- W3157132007 hasConcept C205649164 @default.
- W3157132007 hasConcept C2778348673 @default.
- W3157132007 hasConcept C31903555 @default.
- W3157132007 hasConcept C41008148 @default.
- W3157132007 hasConcept C50644808 @default.
- W3157132007 hasConcept C549605437 @default.
- W3157132007 hasConcept C58166 @default.
- W3157132007 hasConcept C88199923 @default.
- W3157132007 hasConcept C97137747 @default.
- W3157132007 hasConceptScore W3157132007C112964050 @default.
- W3157132007 hasConceptScore W3157132007C11413529 @default.
- W3157132007 hasConceptScore W3157132007C118518473 @default.
- W3157132007 hasConceptScore W3157132007C119857082 @default.
- W3157132007 hasConceptScore W3157132007C139719470 @default.
- W3157132007 hasConceptScore W3157132007C154945302 @default.
- W3157132007 hasConceptScore W3157132007C162324750 @default.
- W3157132007 hasConceptScore W3157132007C166957645 @default.
- W3157132007 hasConceptScore W3157132007C179717631 @default.
- W3157132007 hasConceptScore W3157132007C185592680 @default.
- W3157132007 hasConceptScore W3157132007C186108316 @default.
- W3157132007 hasConceptScore W3157132007C195975749 @default.
- W3157132007 hasConceptScore W3157132007C205649164 @default.
- W3157132007 hasConceptScore W3157132007C2778348673 @default.
- W3157132007 hasConceptScore W3157132007C31903555 @default.
- W3157132007 hasConceptScore W3157132007C41008148 @default.
- W3157132007 hasConceptScore W3157132007C50644808 @default.
- W3157132007 hasConceptScore W3157132007C549605437 @default.
- W3157132007 hasConceptScore W3157132007C58166 @default.
- W3157132007 hasConceptScore W3157132007C88199923 @default.
- W3157132007 hasConceptScore W3157132007C97137747 @default.
- W3157132007 hasLocation W31571320071 @default.
- W3157132007 hasLocation W31571320072 @default.
- W3157132007 hasLocation W31571320073 @default.
- W3157132007 hasLocation W31571320074 @default.
- W3157132007 hasLocation W31571320075 @default.
- W3157132007 hasOpenAccess W3157132007 @default.
- W3157132007 hasPrimaryLocation W31571320071 @default.
- W3157132007 hasRelatedWork W1831338758 @default.
- W3157132007 hasRelatedWork W2080103520 @default.
- W3157132007 hasRelatedWork W2515601440 @default.
- W3157132007 hasRelatedWork W287358497 @default.
- W3157132007 hasRelatedWork W2953981167 @default.
- W3157132007 hasRelatedWork W3125207861 @default.
- W3157132007 hasRelatedWork W4230561514 @default.
- W3157132007 hasRelatedWork W4242057767 @default.
- W3157132007 hasRelatedWork W4280611221 @default.
- W3157132007 hasRelatedWork W4314446176 @default.
- W3157132007 isParatext "false" @default.
- W3157132007 isRetracted "false" @default.
- W3157132007 magId "3157132007" @default.
- W3157132007 workType "article" @default.