Matches in SemOpenAlex for { <https://semopenalex.org/work/W3157142404> ?p ?o ?g. }
- W3157142404 endingPage "e0241728" @default.
- W3157142404 startingPage "e0241728" @default.
- W3157142404 abstract "The discovery and development of novel pharmaceuticals is an area of active research mainly due to the large investments required and long payback times. As of 2016, the development of a novel drug candidate required up to $ USD 2.6 billion in investment for only 10% rate of approval by the FDA. To help decreasing the costs associated with the process, a number of in silico approaches have been developed with relatively low success due to limited predicting performance. Here, we introduced a machine learning-based algorithm as an alternative for a more accurate search of new pharmacological candidates, which takes advantage of Recurrent Neural Networks (RNN) for active molecule prediction within large databases. Our approach, termed PharmaNet was implemented here to search for ligands against specific cell receptors within 102 targets of the DUD-E database, which contains 22886 active molecules. PharmaNet comprises three main phases. First, a SMILES representation of the molecule is converted into a raw molecular image . Second, a convolutional encoder processes the data to obtain a fingerprint molecular image that is finally analyzed by a Recurrent Neural Network (RNN). This approach enables precise predictions of the molecules’ target on the basis of the feature extraction, the sequence analysis and the relevant information filtered out throughout the process. Molecule Target prediction is a highly unbalanced detection problem and therefore, we propose that an adequate evaluation metric of performance is the area under the Normalized Average Precision (NAP) curve. PharmaNet largely surpasses the previous state-of-the-art method with 97.7% in the Receiver Operating Characteristic curve (ROC-AUC) and 65.5% in the NAP curve. We obtained a perfect performance for human farnesyl pyrophosphate synthase (FPPS), which is a potential target for antimicrobial and anticancer treatments. We decided to test PharmaNet for activity prediction against FPPS by searching in the CHEMBL data set. We obtained three (3) potential inhibitors that were further validated through both molecular docking and in silico toxicity prediction. Most importantly, one of this candidates, CHEMBL2007613, was predicted as a potential antiviral due to its involvement on the PCDH17 pathway, which has been reported to be related to viral infections." @default.
- W3157142404 created "2021-05-10" @default.
- W3157142404 creator A5013512298 @default.
- W3157142404 creator A5027996349 @default.
- W3157142404 creator A5039861097 @default.
- W3157142404 creator A5067213214 @default.
- W3157142404 creator A5080732904 @default.
- W3157142404 creator A5083206655 @default.
- W3157142404 creator A5088988977 @default.
- W3157142404 date "2021-04-26" @default.
- W3157142404 modified "2023-10-18" @default.
- W3157142404 title "PharmaNet: Pharmaceutical discovery with deep recurrent neural networks" @default.
- W3157142404 cites W1548328806 @default.
- W3157142404 cites W1832500336 @default.
- W3157142404 cites W1861492603 @default.
- W3157142404 cites W1948751323 @default.
- W3157142404 cites W1965269517 @default.
- W3157142404 cites W1976436265 @default.
- W3157142404 cites W1989328481 @default.
- W3157142404 cites W2037227137 @default.
- W3157142404 cites W2038702914 @default.
- W3157142404 cites W2045842462 @default.
- W3157142404 cites W2059204756 @default.
- W3157142404 cites W2084400739 @default.
- W3157142404 cites W2088980666 @default.
- W3157142404 cites W2090234567 @default.
- W3157142404 cites W2092498488 @default.
- W3157142404 cites W2106421086 @default.
- W3157142404 cites W2119823327 @default.
- W3157142404 cites W2129853470 @default.
- W3157142404 cites W2154108344 @default.
- W3157142404 cites W2157331557 @default.
- W3157142404 cites W2189911347 @default.
- W3157142404 cites W2194775991 @default.
- W3157142404 cites W2567231876 @default.
- W3157142404 cites W2578240541 @default.
- W3157142404 cites W2769426045 @default.
- W3157142404 cites W2783471871 @default.
- W3157142404 cites W2895420596 @default.
- W3157142404 cites W2896002881 @default.
- W3157142404 cites W2897124099 @default.
- W3157142404 cites W2914605717 @default.
- W3157142404 cites W2917806359 @default.
- W3157142404 cites W2959938226 @default.
- W3157142404 cites W2969325194 @default.
- W3157142404 cites W3007309629 @default.
- W3157142404 cites W3048593737 @default.
- W3157142404 cites W3096104140 @default.
- W3157142404 cites W3098547059 @default.
- W3157142404 cites W4248107770 @default.
- W3157142404 doi "https://doi.org/10.1371/journal.pone.0241728" @default.
- W3157142404 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8075191" @default.
- W3157142404 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33901196" @default.
- W3157142404 hasPublicationYear "2021" @default.
- W3157142404 type Work @default.
- W3157142404 sameAs 3157142404 @default.
- W3157142404 citedByCount "5" @default.
- W3157142404 countsByYear W31571424042022 @default.
- W3157142404 countsByYear W31571424042023 @default.
- W3157142404 crossrefType "journal-article" @default.
- W3157142404 hasAuthorship W3157142404A5013512298 @default.
- W3157142404 hasAuthorship W3157142404A5027996349 @default.
- W3157142404 hasAuthorship W3157142404A5039861097 @default.
- W3157142404 hasAuthorship W3157142404A5067213214 @default.
- W3157142404 hasAuthorship W3157142404A5080732904 @default.
- W3157142404 hasAuthorship W3157142404A5083206655 @default.
- W3157142404 hasAuthorship W3157142404A5088988977 @default.
- W3157142404 hasBestOaLocation W31571424041 @default.
- W3157142404 hasConcept C101738243 @default.
- W3157142404 hasConcept C108583219 @default.
- W3157142404 hasConcept C111919701 @default.
- W3157142404 hasConcept C119857082 @default.
- W3157142404 hasConcept C124101348 @default.
- W3157142404 hasConcept C147168706 @default.
- W3157142404 hasConcept C153180895 @default.
- W3157142404 hasConcept C154945302 @default.
- W3157142404 hasConcept C162324750 @default.
- W3157142404 hasConcept C176217482 @default.
- W3157142404 hasConcept C21547014 @default.
- W3157142404 hasConcept C41008148 @default.
- W3157142404 hasConcept C50644808 @default.
- W3157142404 hasConcept C60644358 @default.
- W3157142404 hasConcept C63222358 @default.
- W3157142404 hasConcept C74187038 @default.
- W3157142404 hasConcept C81363708 @default.
- W3157142404 hasConcept C86803240 @default.
- W3157142404 hasConcept C98045186 @default.
- W3157142404 hasConceptScore W3157142404C101738243 @default.
- W3157142404 hasConceptScore W3157142404C108583219 @default.
- W3157142404 hasConceptScore W3157142404C111919701 @default.
- W3157142404 hasConceptScore W3157142404C119857082 @default.
- W3157142404 hasConceptScore W3157142404C124101348 @default.
- W3157142404 hasConceptScore W3157142404C147168706 @default.
- W3157142404 hasConceptScore W3157142404C153180895 @default.
- W3157142404 hasConceptScore W3157142404C154945302 @default.
- W3157142404 hasConceptScore W3157142404C162324750 @default.
- W3157142404 hasConceptScore W3157142404C176217482 @default.
- W3157142404 hasConceptScore W3157142404C21547014 @default.