Matches in SemOpenAlex for { <https://semopenalex.org/work/W3157148855> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W3157148855 endingPage "66061" @default.
- W3157148855 startingPage "66052" @default.
- W3157148855 abstract "Skin cancer is one of the most deadly cancer types with considerable number of patients. Image analysis has largely improved the automated diagnosis accuracy for malignant melanoma and other pigmented skin lesions, compared to unaided visual examination. Recent popular solution for automated skin lesion classification is using deep neural networks, trained from large amounts of professional annotated data, but that largely limits the model’s scalability. This paper exploits transfer learning for skin lesion classification task with the help of labeled data from another domain (source), and proposes a multi-view filtered transfer learning network to strongly represent discriminative information from different image views with reasonable weighing strategy. This method also evaluates the importance for each source images, which can learn useful knowledge with neglecting negative samples from source domain. The extensive skin lesion classification experiments demonstrate our method can effectively solve Melanoma and Seborrheic Keratosis classification tasks with outstanding extensibility, and the discussion of the major components also testifies the improvements of our proposed multi-view filtered transfer learning approach." @default.
- W3157148855 created "2021-05-10" @default.
- W3157148855 creator A5004653178 @default.
- W3157148855 creator A5005908452 @default.
- W3157148855 creator A5025438179 @default.
- W3157148855 creator A5039365969 @default.
- W3157148855 creator A5048137655 @default.
- W3157148855 date "2021-01-01" @default.
- W3157148855 modified "2023-10-13" @default.
- W3157148855 title "Skin Lesion Classification by Multi-View Filtered Transfer Learning" @default.
- W3157148855 cites W1916279783 @default.
- W3157148855 cites W1996828958 @default.
- W3157148855 cites W2017405438 @default.
- W3157148855 cites W2023191766 @default.
- W3157148855 cites W2040600853 @default.
- W3157148855 cites W2073556702 @default.
- W3157148855 cites W2081527131 @default.
- W3157148855 cites W2100111947 @default.
- W3157148855 cites W2104094955 @default.
- W3157148855 cites W2163352848 @default.
- W3157148855 cites W2194775991 @default.
- W3157148855 cites W2581082771 @default.
- W3157148855 cites W2752782242 @default.
- W3157148855 cites W2811092297 @default.
- W3157148855 cites W2899425762 @default.
- W3157148855 cites W2914959431 @default.
- W3157148855 cites W2943964494 @default.
- W3157148855 cites W2946122943 @default.
- W3157148855 cites W2955547856 @default.
- W3157148855 cites W2963031596 @default.
- W3157148855 cites W2963495494 @default.
- W3157148855 cites W2963946669 @default.
- W3157148855 cites W2976700284 @default.
- W3157148855 cites W2989794148 @default.
- W3157148855 cites W2990042794 @default.
- W3157148855 cites W2994880724 @default.
- W3157148855 cites W3012614932 @default.
- W3157148855 cites W3018638193 @default.
- W3157148855 cites W3036106244 @default.
- W3157148855 cites W3036365526 @default.
- W3157148855 cites W3037436903 @default.
- W3157148855 cites W3038540011 @default.
- W3157148855 cites W3041507802 @default.
- W3157148855 cites W3042980549 @default.
- W3157148855 cites W3085376891 @default.
- W3157148855 cites W3085719542 @default.
- W3157148855 cites W3096799072 @default.
- W3157148855 doi "https://doi.org/10.1109/access.2021.3076533" @default.
- W3157148855 hasPublicationYear "2021" @default.
- W3157148855 type Work @default.
- W3157148855 sameAs 3157148855 @default.
- W3157148855 citedByCount "18" @default.
- W3157148855 countsByYear W31571488552021 @default.
- W3157148855 countsByYear W31571488552022 @default.
- W3157148855 countsByYear W31571488552023 @default.
- W3157148855 crossrefType "journal-article" @default.
- W3157148855 hasAuthorship W3157148855A5004653178 @default.
- W3157148855 hasAuthorship W3157148855A5005908452 @default.
- W3157148855 hasAuthorship W3157148855A5025438179 @default.
- W3157148855 hasAuthorship W3157148855A5039365969 @default.
- W3157148855 hasAuthorship W3157148855A5048137655 @default.
- W3157148855 hasBestOaLocation W31571488551 @default.
- W3157148855 hasConcept C150899416 @default.
- W3157148855 hasConcept C153180895 @default.
- W3157148855 hasConcept C154945302 @default.
- W3157148855 hasConcept C31972630 @default.
- W3157148855 hasConcept C41008148 @default.
- W3157148855 hasConceptScore W3157148855C150899416 @default.
- W3157148855 hasConceptScore W3157148855C153180895 @default.
- W3157148855 hasConceptScore W3157148855C154945302 @default.
- W3157148855 hasConceptScore W3157148855C31972630 @default.
- W3157148855 hasConceptScore W3157148855C41008148 @default.
- W3157148855 hasFunder F4320329179 @default.
- W3157148855 hasFunder F4320334993 @default.
- W3157148855 hasFunder F4320336616 @default.
- W3157148855 hasLocation W31571488551 @default.
- W3157148855 hasLocation W31571488552 @default.
- W3157148855 hasOpenAccess W3157148855 @default.
- W3157148855 hasPrimaryLocation W31571488551 @default.
- W3157148855 hasRelatedWork W1891287906 @default.
- W3157148855 hasRelatedWork W2738221750 @default.
- W3157148855 hasRelatedWork W2887603104 @default.
- W3157148855 hasRelatedWork W2909857627 @default.
- W3157148855 hasRelatedWork W2942629287 @default.
- W3157148855 hasRelatedWork W3153891452 @default.
- W3157148855 hasRelatedWork W3172364442 @default.
- W3157148855 hasRelatedWork W3211334395 @default.
- W3157148855 hasRelatedWork W4220663171 @default.
- W3157148855 hasRelatedWork W4245792239 @default.
- W3157148855 hasVolume "9" @default.
- W3157148855 isParatext "false" @default.
- W3157148855 isRetracted "false" @default.
- W3157148855 magId "3157148855" @default.
- W3157148855 workType "article" @default.