Matches in SemOpenAlex for { <https://semopenalex.org/work/W3157152088> ?p ?o ?g. }
- W3157152088 endingPage "1987-1998" @default.
- W3157152088 startingPage "1987-1998" @default.
- W3157152088 abstract "In 2002, certain amendments were proposed by food and drug administration in cGMP (current good manufacturing process) to modernize and improve the regulations for drug manufacturing and quality. Considering the amendments International Conference of Harmonization (ICH) developed Q8 guideline for pharmaceutical development which is based on the concept of Quality by Design (QbD). QbD is a systematic approach to pharmaceutical development with pre-defined objectives of designing manufacturing processes and developing manufacturing formulation of prescribed quality and offers better understanding of critical process. Later Q9 (Quality Risk Management) and Q10 (Pharmaceutical Quality System) guideline was introduced based on Q8. Pharmaceutical manufacturing is a complex process including multi variable interaction between process condition and raw material which is important for processing and defining the quality of the end product. This developed an urge in the researchers of employing design of experiment (DoE) to link CQAs (Critical Quality Attributes) to process parameters and API and excipient attributes and to define the design space. Artificial Intelligence can establish relationship between process parameters and various formulations in more understandable way while saving huge amount of money and time. Genetic algorithms, neural network are the technologies growing rapidly in pharmaceutical quality control processing.Artificial neural network is a data processing and learning machine which is inspired by the functioning of human brain. Human brain works slow but potential to perform complex tasks that computer is unable or might take long time to perform. ANN consists of artificial neurons (connected parallel) and weighs also called synaptic strength that helps to emulate the nervous system. Neural networks have capability of establishing the relation between the input and output data without prior assumptions or knowledge about the given data set that makes it suitable for regression and classification tasks which plays a vital role in many biomedical applications. Conventional methods for analysing the data is linear but neural network are non-linear (inherently) that makes it practicable for preparing models of complex data accurately. Hence, ANN can be used to solve many problems in biomedical and healthcare sector. This review article aims on demonstrating the successful and innovative application of Artificial Neural Network in the pharmaceutical industries." @default.
- W3157152088 created "2021-05-10" @default.
- W3157152088 creator A5063872859 @default.
- W3157152088 creator A5071564241 @default.
- W3157152088 creator A5073874275 @default.
- W3157152088 creator A5086777692 @default.
- W3157152088 date "2021-02-01" @default.
- W3157152088 modified "2023-10-11" @default.
- W3157152088 title "ARTIFICIAL INTELLIGENCE IN PHARMA PROCESSING" @default.
- W3157152088 cites W1591298995 @default.
- W3157152088 cites W1968966853 @default.
- W3157152088 cites W1979481963 @default.
- W3157152088 cites W2010188685 @default.
- W3157152088 cites W2025919693 @default.
- W3157152088 cites W2028070629 @default.
- W3157152088 cites W2034407355 @default.
- W3157152088 cites W2036887587 @default.
- W3157152088 cites W2039929264 @default.
- W3157152088 cites W2072462334 @default.
- W3157152088 cites W2086322514 @default.
- W3157152088 cites W2099541593 @default.
- W3157152088 cites W2100847075 @default.
- W3157152088 cites W2106390644 @default.
- W3157152088 cites W2121963092 @default.
- W3157152088 cites W2154870396 @default.
- W3157152088 cites W2181959898 @default.
- W3157152088 cites W2257338127 @default.
- W3157152088 cites W2287566608 @default.
- W3157152088 cites W2330730783 @default.
- W3157152088 cites W2408397893 @default.
- W3157152088 cites W2771598754 @default.
- W3157152088 cites W2891942766 @default.
- W3157152088 cites W2895468986 @default.
- W3157152088 cites W2902568946 @default.
- W3157152088 cites W2927351257 @default.
- W3157152088 cites W2937307539 @default.
- W3157152088 cites W2953395532 @default.
- W3157152088 cites W2953532875 @default.
- W3157152088 cites W87443663 @default.
- W3157152088 cites W92214286 @default.
- W3157152088 hasPublicationYear "2021" @default.
- W3157152088 type Work @default.
- W3157152088 sameAs 3157152088 @default.
- W3157152088 citedByCount "0" @default.
- W3157152088 crossrefType "journal-article" @default.
- W3157152088 hasAuthorship W3157152088A5063872859 @default.
- W3157152088 hasAuthorship W3157152088A5071564241 @default.
- W3157152088 hasAuthorship W3157152088A5073874275 @default.
- W3157152088 hasAuthorship W3157152088A5086777692 @default.
- W3157152088 hasConcept C111472728 @default.
- W3157152088 hasConcept C111919701 @default.
- W3157152088 hasConcept C112930515 @default.
- W3157152088 hasConcept C117671659 @default.
- W3157152088 hasConcept C127413603 @default.
- W3157152088 hasConcept C138885662 @default.
- W3157152088 hasConcept C144133560 @default.
- W3157152088 hasConcept C150903083 @default.
- W3157152088 hasConcept C154945302 @default.
- W3157152088 hasConcept C174998907 @default.
- W3157152088 hasConcept C178144697 @default.
- W3157152088 hasConcept C204320433 @default.
- W3157152088 hasConcept C21547014 @default.
- W3157152088 hasConcept C2776207758 @default.
- W3157152088 hasConcept C2778938233 @default.
- W3157152088 hasConcept C2779530757 @default.
- W3157152088 hasConcept C2779652045 @default.
- W3157152088 hasConcept C2780449318 @default.
- W3157152088 hasConcept C41008148 @default.
- W3157152088 hasConcept C50644808 @default.
- W3157152088 hasConcept C71924100 @default.
- W3157152088 hasConcept C86803240 @default.
- W3157152088 hasConcept C98045186 @default.
- W3157152088 hasConcept C98274493 @default.
- W3157152088 hasConceptScore W3157152088C111472728 @default.
- W3157152088 hasConceptScore W3157152088C111919701 @default.
- W3157152088 hasConceptScore W3157152088C112930515 @default.
- W3157152088 hasConceptScore W3157152088C117671659 @default.
- W3157152088 hasConceptScore W3157152088C127413603 @default.
- W3157152088 hasConceptScore W3157152088C138885662 @default.
- W3157152088 hasConceptScore W3157152088C144133560 @default.
- W3157152088 hasConceptScore W3157152088C150903083 @default.
- W3157152088 hasConceptScore W3157152088C154945302 @default.
- W3157152088 hasConceptScore W3157152088C174998907 @default.
- W3157152088 hasConceptScore W3157152088C178144697 @default.
- W3157152088 hasConceptScore W3157152088C204320433 @default.
- W3157152088 hasConceptScore W3157152088C21547014 @default.
- W3157152088 hasConceptScore W3157152088C2776207758 @default.
- W3157152088 hasConceptScore W3157152088C2778938233 @default.
- W3157152088 hasConceptScore W3157152088C2779530757 @default.
- W3157152088 hasConceptScore W3157152088C2779652045 @default.
- W3157152088 hasConceptScore W3157152088C2780449318 @default.
- W3157152088 hasConceptScore W3157152088C41008148 @default.
- W3157152088 hasConceptScore W3157152088C50644808 @default.
- W3157152088 hasConceptScore W3157152088C71924100 @default.
- W3157152088 hasConceptScore W3157152088C86803240 @default.
- W3157152088 hasConceptScore W3157152088C98045186 @default.
- W3157152088 hasConceptScore W3157152088C98274493 @default.
- W3157152088 hasIssue "2" @default.