Matches in SemOpenAlex for { <https://semopenalex.org/work/W3157152114> ?p ?o ?g. }
- W3157152114 endingPage "109777" @default.
- W3157152114 startingPage "109777" @default.
- W3157152114 abstract "Multi-principal elements alloys (MPEAs) have been attracted extensive attention in industry due to their extraordinary properties. However, owning to their large degree of freedom in composition design, finding the principal influence factors of the material properties and further coordinating a desirable combination of conflicting properties is always a challenge. In this respect, we have developed a strategy on studying the MPEAs for its composition design in a certain mechanical property by high throughput preparation of powder metallurgy and by machine learning. We chose Zr-Ti-Nb-O alloys as target materials. To unveil key features that mainly influence the mechanical properties, models selection, features screening, and further features importance ordering were performed. The results indicate that the strength and plasticity are dominated by Λ parameter, difference of atomic radius, difference of shear modulus, etc. The prediction error for the strength and plasticity can reach to below 10% and 16%, respectively. According to analysis of the key features, a strength model is modified and used for evaluating the contributions of solid solution strengthening among principle and trace elements. The strategy proposed here will be applicable on element selections for a large variety of material property modulations in the MPEAs prepared by powder metallurgy." @default.
- W3157152114 created "2021-05-10" @default.
- W3157152114 creator A5005282711 @default.
- W3157152114 creator A5010259616 @default.
- W3157152114 creator A5030346561 @default.
- W3157152114 creator A5036681335 @default.
- W3157152114 creator A5037695446 @default.
- W3157152114 creator A5071831009 @default.
- W3157152114 creator A5081214576 @default.
- W3157152114 date "2021-08-01" @default.
- W3157152114 modified "2023-10-01" @default.
- W3157152114 title "Study on strengthening effects of Zr-Ti-Nb-O alloys via high throughput powder metallurgy and data-driven machine learning" @default.
- W3157152114 cites W1886626438 @default.
- W3157152114 cites W1989167365 @default.
- W3157152114 cites W1991046318 @default.
- W3157152114 cites W1991258650 @default.
- W3157152114 cites W1998803278 @default.
- W3157152114 cites W2004953333 @default.
- W3157152114 cites W2007876110 @default.
- W3157152114 cites W2013344138 @default.
- W3157152114 cites W2020462182 @default.
- W3157152114 cites W2027329930 @default.
- W3157152114 cites W2031024494 @default.
- W3157152114 cites W2042290717 @default.
- W3157152114 cites W2049621164 @default.
- W3157152114 cites W2052535685 @default.
- W3157152114 cites W2060861092 @default.
- W3157152114 cites W2065981209 @default.
- W3157152114 cites W2068415766 @default.
- W3157152114 cites W2069483681 @default.
- W3157152114 cites W2076855563 @default.
- W3157152114 cites W2084576065 @default.
- W3157152114 cites W2087193250 @default.
- W3157152114 cites W2166025484 @default.
- W3157152114 cites W2167590372 @default.
- W3157152114 cites W2193109498 @default.
- W3157152114 cites W2201563651 @default.
- W3157152114 cites W2347129741 @default.
- W3157152114 cites W2512448911 @default.
- W3157152114 cites W2550215930 @default.
- W3157152114 cites W2708632288 @default.
- W3157152114 cites W2738440494 @default.
- W3157152114 cites W2742835787 @default.
- W3157152114 cites W2750250259 @default.
- W3157152114 cites W2754519447 @default.
- W3157152114 cites W2765941006 @default.
- W3157152114 cites W2773158732 @default.
- W3157152114 cites W2788500979 @default.
- W3157152114 cites W2802652936 @default.
- W3157152114 cites W2805887307 @default.
- W3157152114 cites W2884430236 @default.
- W3157152114 cites W2885427655 @default.
- W3157152114 cites W2901546241 @default.
- W3157152114 cites W2916929456 @default.
- W3157152114 cites W2917381693 @default.
- W3157152114 cites W2921631957 @default.
- W3157152114 cites W2921873493 @default.
- W3157152114 cites W2922127369 @default.
- W3157152114 cites W2943155923 @default.
- W3157152114 cites W2951468489 @default.
- W3157152114 cites W2964304476 @default.
- W3157152114 cites W2984017794 @default.
- W3157152114 cites W2993856322 @default.
- W3157152114 cites W3012382619 @default.
- W3157152114 cites W3014193915 @default.
- W3157152114 cites W3015828709 @default.
- W3157152114 cites W3018692158 @default.
- W3157152114 cites W3033546559 @default.
- W3157152114 cites W3036633891 @default.
- W3157152114 cites W3041645345 @default.
- W3157152114 cites W3047844393 @default.
- W3157152114 cites W3048278219 @default.
- W3157152114 cites W3048941694 @default.
- W3157152114 cites W3052541078 @default.
- W3157152114 cites W3080112152 @default.
- W3157152114 cites W3085211004 @default.
- W3157152114 cites W3089256683 @default.
- W3157152114 cites W3092621799 @default.
- W3157152114 cites W3093992584 @default.
- W3157152114 cites W3095607718 @default.
- W3157152114 cites W3097363434 @default.
- W3157152114 cites W3099410181 @default.
- W3157152114 cites W3116711439 @default.
- W3157152114 cites W3118818500 @default.
- W3157152114 doi "https://doi.org/10.1016/j.matdes.2021.109777" @default.
- W3157152114 hasPublicationYear "2021" @default.
- W3157152114 type Work @default.
- W3157152114 sameAs 3157152114 @default.
- W3157152114 citedByCount "10" @default.
- W3157152114 countsByYear W31571521142021 @default.
- W3157152114 countsByYear W31571521142022 @default.
- W3157152114 countsByYear W31571521142023 @default.
- W3157152114 crossrefType "journal-article" @default.
- W3157152114 hasAuthorship W3157152114A5005282711 @default.
- W3157152114 hasAuthorship W3157152114A5010259616 @default.
- W3157152114 hasAuthorship W3157152114A5030346561 @default.
- W3157152114 hasAuthorship W3157152114A5036681335 @default.
- W3157152114 hasAuthorship W3157152114A5037695446 @default.