Matches in SemOpenAlex for { <https://semopenalex.org/work/W3157156599> ?p ?o ?g. }
- W3157156599 endingPage "117251" @default.
- W3157156599 startingPage "117251" @default.
- W3157156599 abstract "Microplastic pollution is a global concern theme, and there is still the need for less laborious and faster analytical methods aiming at microplastics detection. This article describes a high throughput screening method based on near-infrared hyperspectral imaging (HSI-NIR) to identify microplastics in beach sand automatically with minimum sample preparation. The method operates directly in the entire sample or on its retained fraction (150 μm–5 mm) after sieving. Small colorless microplastics (<600 μm) that would probably be imperceptible as a microplastic by visual inspection, or missed during manual pick up, can be easily detected. No spectroscopic subsampling was performed due to the high-speed analysis of line-scan instrumentation, allowing multiple microplastics to be assessed simultaneously (video available). This characteristic is an advantage over conventional infrared (IR) spectrometers. A 75 cm2 scan area was probed in less than 1 min at a pixel size of 156 × 156 μm. An in-house comprehensive spectral dataset, including weathered microplastics, was used to build multivariate supervised soft independent modelling of class analogy (SIMCA) classification models. The chemometric models were validated for hundreds of microplastics (primary and secondary) collected in the environment. The effect of particle size, color and weathering are discussed. Models' sensitivity and specificity for polyethylene (PE), polypropylene (PP), polyamide-6 (PA), polyethylene terephthalate (PET) and polystyrene (PS) were over 99% at the defined statistical threshold. The method was applied to a sand sample, identifying 803 particles without prior visual sorting, showing automatic identification was robust and reliable even for weathered microplastics analyzed together with other matrix constituents. The HSI-NIR-SIMCA described is also applicable for microplastics extracted from other matrices after sample preparation. The HSI-NIR principals were compared to other common techniques used to microplastic chemical characterization. The results show the potential to use HSI-NIR combined with classification models as a comprehensive microplastic-type characterization screening." @default.
- W3157156599 created "2021-05-10" @default.
- W3157156599 creator A5017762566 @default.
- W3157156599 creator A5087178907 @default.
- W3157156599 date "2021-09-01" @default.
- W3157156599 modified "2023-10-03" @default.
- W3157156599 title "A comprehensive and fast microplastics identification based on near-infrared hyperspectral imaging (HSI-NIR) and chemometrics" @default.
- W3157156599 cites W1183216373 @default.
- W3157156599 cites W1956592121 @default.
- W3157156599 cites W1967140713 @default.
- W3157156599 cites W1979949174 @default.
- W3157156599 cites W1984447165 @default.
- W3157156599 cites W2004594170 @default.
- W3157156599 cites W2005404508 @default.
- W3157156599 cites W2017422910 @default.
- W3157156599 cites W2063832535 @default.
- W3157156599 cites W2090687931 @default.
- W3157156599 cites W2096062275 @default.
- W3157156599 cites W2098136451 @default.
- W3157156599 cites W2109606373 @default.
- W3157156599 cites W2130707940 @default.
- W3157156599 cites W2150503350 @default.
- W3157156599 cites W2163474281 @default.
- W3157156599 cites W2163500541 @default.
- W3157156599 cites W2324579865 @default.
- W3157156599 cites W2345700429 @default.
- W3157156599 cites W2407417620 @default.
- W3157156599 cites W2514599938 @default.
- W3157156599 cites W2528340666 @default.
- W3157156599 cites W2551105134 @default.
- W3157156599 cites W2555925165 @default.
- W3157156599 cites W2561450037 @default.
- W3157156599 cites W2761872959 @default.
- W3157156599 cites W2763148304 @default.
- W3157156599 cites W2769607111 @default.
- W3157156599 cites W2772422681 @default.
- W3157156599 cites W2775157412 @default.
- W3157156599 cites W2786404418 @default.
- W3157156599 cites W2789438661 @default.
- W3157156599 cites W2789904487 @default.
- W3157156599 cites W2799365888 @default.
- W3157156599 cites W2802736862 @default.
- W3157156599 cites W2803194242 @default.
- W3157156599 cites W2805849778 @default.
- W3157156599 cites W2889579625 @default.
- W3157156599 cites W2892789841 @default.
- W3157156599 cites W2897982866 @default.
- W3157156599 cites W2899577242 @default.
- W3157156599 cites W2899740393 @default.
- W3157156599 cites W2910057912 @default.
- W3157156599 cites W2921331508 @default.
- W3157156599 cites W2922884429 @default.
- W3157156599 cites W2936115560 @default.
- W3157156599 cites W2969569296 @default.
- W3157156599 cites W2969762450 @default.
- W3157156599 cites W2970911118 @default.
- W3157156599 cites W2972624700 @default.
- W3157156599 cites W2992407267 @default.
- W3157156599 cites W3003642768 @default.
- W3157156599 cites W3003867202 @default.
- W3157156599 cites W3008977267 @default.
- W3157156599 cites W3010017993 @default.
- W3157156599 cites W3038092594 @default.
- W3157156599 cites W3041360564 @default.
- W3157156599 cites W3045070191 @default.
- W3157156599 cites W3078948747 @default.
- W3157156599 cites W3087291236 @default.
- W3157156599 cites W3110142538 @default.
- W3157156599 cites W609165088 @default.
- W3157156599 cites W913040501 @default.
- W3157156599 doi "https://doi.org/10.1016/j.envpol.2021.117251" @default.
- W3157156599 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33957518" @default.
- W3157156599 hasPublicationYear "2021" @default.
- W3157156599 type Work @default.
- W3157156599 sameAs 3157156599 @default.
- W3157156599 citedByCount "36" @default.
- W3157156599 countsByYear W31571565992021 @default.
- W3157156599 countsByYear W31571565992022 @default.
- W3157156599 countsByYear W31571565992023 @default.
- W3157156599 crossrefType "journal-article" @default.
- W3157156599 hasAuthorship W3157156599A5017762566 @default.
- W3157156599 hasAuthorship W3157156599A5087178907 @default.
- W3157156599 hasConcept C107872376 @default.
- W3157156599 hasConcept C127313418 @default.
- W3157156599 hasConcept C151304367 @default.
- W3157156599 hasConcept C154945302 @default.
- W3157156599 hasConcept C159078339 @default.
- W3157156599 hasConcept C185592680 @default.
- W3157156599 hasConcept C186060115 @default.
- W3157156599 hasConcept C2780401329 @default.
- W3157156599 hasConcept C39432304 @default.
- W3157156599 hasConcept C41008148 @default.
- W3157156599 hasConcept C43617362 @default.
- W3157156599 hasConcept C62649853 @default.
- W3157156599 hasConcept C86803240 @default.
- W3157156599 hasConceptScore W3157156599C107872376 @default.
- W3157156599 hasConceptScore W3157156599C127313418 @default.
- W3157156599 hasConceptScore W3157156599C151304367 @default.