Matches in SemOpenAlex for { <https://semopenalex.org/work/W3157164925> ?p ?o ?g. }
- W3157164925 endingPage "98" @default.
- W3157164925 startingPage "79" @default.
- W3157164925 abstract "For NP-hard combinatorial optimization problems, it is usually challenging to find high-quality solutions in polynomial time. Designing either an exact algorithm or an approximate algorithm for these problems often requires significantly specialized knowledge. Recently, deep learning methods have provided new directions to solve such problems. In this paper, an end-to-end deep reinforcement learning framework is proposed to solve this type of combinatorial optimization problems. This framework can be applied to different problems with only slight changes of input, masks, and decoder context vectors. The proposed framework aims to improve the models in literacy in terms of the neural network model and the training algorithm. The solution quality of TSP and the CVRP up to 100 nodes are significantly improved via our framework. Compared with the best results of the state-of-the-art methods, the average optimality gap is reduced from 4.53% to 3.67% for TSP with 100 nodes and from 7.34% to 6.68% for CVRP with 100 nodes when using the greedy decoding strategy. Besides, the proposed framework can be used to solve a multi-depot CVRP case without any structural modification. Furthermore, our framework uses about 1/3∼3/4 training samples compared with other existing learning methods while achieving better results. The results performed on randomly generated instances, and the benchmark instances from TSPLIB and CVRPLIB confirm that our framework has a linear running time on the problem size (number of nodes) during training and testing phases and has a good generalization performance from random instance training to real-world instance testing." @default.
- W3157164925 created "2021-05-10" @default.
- W3157164925 creator A5007722261 @default.
- W3157164925 creator A5043801769 @default.
- W3157164925 creator A5069708440 @default.
- W3157164925 creator A5083690677 @default.
- W3157164925 creator A5086170194 @default.
- W3157164925 date "2022-10-01" @default.
- W3157164925 modified "2023-10-18" @default.
- W3157164925 title "Solve routing problems with a residual edge-graph attention neural network" @default.
- W3157164925 cites W1972385709 @default.
- W3157164925 cites W1996315642 @default.
- W3157164925 cites W2002906281 @default.
- W3157164925 cites W2119717200 @default.
- W3157164925 cites W2145339207 @default.
- W3157164925 cites W2163428398 @default.
- W3157164925 cites W2509755532 @default.
- W3157164925 cites W2803452670 @default.
- W3157164925 cites W2804553260 @default.
- W3157164925 cites W2805798351 @default.
- W3157164925 cites W2808786377 @default.
- W3157164925 cites W2885965377 @default.
- W3157164925 cites W2887603607 @default.
- W3157164925 cites W2907117055 @default.
- W3157164925 cites W2910984544 @default.
- W3157164925 cites W2937090749 @default.
- W3157164925 cites W2942476636 @default.
- W3157164925 cites W2998409228 @default.
- W3157164925 cites W3003557778 @default.
- W3157164925 cites W3007423657 @default.
- W3157164925 cites W3012428206 @default.
- W3157164925 cites W3015862565 @default.
- W3157164925 cites W3033044509 @default.
- W3157164925 cites W3040879766 @default.
- W3157164925 cites W3043239066 @default.
- W3157164925 cites W3047863327 @default.
- W3157164925 cites W3103176522 @default.
- W3157164925 cites W3109386843 @default.
- W3157164925 cites W3110971738 @default.
- W3157164925 doi "https://doi.org/10.1016/j.neucom.2022.08.005" @default.
- W3157164925 hasPublicationYear "2022" @default.
- W3157164925 type Work @default.
- W3157164925 sameAs 3157164925 @default.
- W3157164925 citedByCount "8" @default.
- W3157164925 countsByYear W31571649252022 @default.
- W3157164925 countsByYear W31571649252023 @default.
- W3157164925 crossrefType "journal-article" @default.
- W3157164925 hasAuthorship W3157164925A5007722261 @default.
- W3157164925 hasAuthorship W3157164925A5043801769 @default.
- W3157164925 hasAuthorship W3157164925A5069708440 @default.
- W3157164925 hasAuthorship W3157164925A5083690677 @default.
- W3157164925 hasAuthorship W3157164925A5086170194 @default.
- W3157164925 hasBestOaLocation W31571649252 @default.
- W3157164925 hasConcept C11413529 @default.
- W3157164925 hasConcept C123784306 @default.
- W3157164925 hasConcept C126255220 @default.
- W3157164925 hasConcept C132525143 @default.
- W3157164925 hasConcept C13280743 @default.
- W3157164925 hasConcept C134306372 @default.
- W3157164925 hasConcept C151730666 @default.
- W3157164925 hasConcept C154945302 @default.
- W3157164925 hasConcept C155512373 @default.
- W3157164925 hasConcept C162307627 @default.
- W3157164925 hasConcept C177148314 @default.
- W3157164925 hasConcept C185798385 @default.
- W3157164925 hasConcept C205649164 @default.
- W3157164925 hasConcept C2779343474 @default.
- W3157164925 hasConcept C311688 @default.
- W3157164925 hasConcept C31258907 @default.
- W3157164925 hasConcept C33923547 @default.
- W3157164925 hasConcept C41008148 @default.
- W3157164925 hasConcept C50644808 @default.
- W3157164925 hasConcept C74172769 @default.
- W3157164925 hasConcept C80444323 @default.
- W3157164925 hasConcept C86803240 @default.
- W3157164925 hasConcept C97541855 @default.
- W3157164925 hasConceptScore W3157164925C11413529 @default.
- W3157164925 hasConceptScore W3157164925C123784306 @default.
- W3157164925 hasConceptScore W3157164925C126255220 @default.
- W3157164925 hasConceptScore W3157164925C132525143 @default.
- W3157164925 hasConceptScore W3157164925C13280743 @default.
- W3157164925 hasConceptScore W3157164925C134306372 @default.
- W3157164925 hasConceptScore W3157164925C151730666 @default.
- W3157164925 hasConceptScore W3157164925C154945302 @default.
- W3157164925 hasConceptScore W3157164925C155512373 @default.
- W3157164925 hasConceptScore W3157164925C162307627 @default.
- W3157164925 hasConceptScore W3157164925C177148314 @default.
- W3157164925 hasConceptScore W3157164925C185798385 @default.
- W3157164925 hasConceptScore W3157164925C205649164 @default.
- W3157164925 hasConceptScore W3157164925C2779343474 @default.
- W3157164925 hasConceptScore W3157164925C311688 @default.
- W3157164925 hasConceptScore W3157164925C31258907 @default.
- W3157164925 hasConceptScore W3157164925C33923547 @default.
- W3157164925 hasConceptScore W3157164925C41008148 @default.
- W3157164925 hasConceptScore W3157164925C50644808 @default.
- W3157164925 hasConceptScore W3157164925C74172769 @default.
- W3157164925 hasConceptScore W3157164925C80444323 @default.
- W3157164925 hasConceptScore W3157164925C86803240 @default.