Matches in SemOpenAlex for { <https://semopenalex.org/work/W3157185718> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W3157185718 endingPage "2653" @default.
- W3157185718 startingPage "2653" @default.
- W3157185718 abstract "Accurate estimation of crude oil Bubble Point Pressure (Pb) plays a vital rule in the development cycle of an oil field. Bubble point pressure is required in many petroleum engineering calculations such as reserves estimation, material balance, reservoir simulation, production equipment design, and optimization of well performance. Additionally, bubble point pressure is a key input parameter in most oil property correlations. Thus, an error in a bubble point pressure estimate will definitely propagate additional error in the prediction of other oil properties. Accordingly, many bubble point pressure correlations have been developed in the literature. However, they often lack accuracy, especially when applied for global crude oil data, due to the fact that they are either developed using a limited range of independent variables or developed for a specific geographic location (i.e., specific crude oil composition). This research presents a utilization of the state-of-the-art Bayesian optimized Least Square Gradient Boosting Ensemble (LS-Boost) to predict bubble pointpressure as a function of readily available field data. The proposed model was trained on a global crude oil database which contains (4800) experimentally measured, Pressure–Volume–Temperature (PVT) data sets of a diverse collection of crude oil mixtures from different oil fields in the NorthSea, Africa, Asia, Middle East, and South and North America. Furthermore, an independent (775) PVT data set, which was collected from open literature, was used to investigate the effectiveness of the proposed model to predict the bubble point pressure from data that were not used during the model development process. The accuracy of the proposed model was compared to several published correlations (13 in total for both parametric and non-parametric models) as well as two other machine learning techniques, Multi-Layer Perceptron Neural Networks (MPL-ANN) and Support Vector Machines (SVM). The proposed LS-Boost model showed superior performance andremarkably outperformed all bubble point pressure models considered in this study." @default.
- W3157185718 created "2021-05-10" @default.
- W3157185718 creator A5014545863 @default.
- W3157185718 creator A5069331404 @default.
- W3157185718 date "2021-05-05" @default.
- W3157185718 modified "2023-10-14" @default.
- W3157185718 title "A New Model for Estimation of Bubble Point Pressure Using a Bayesian Optimized Least Square Gradient Boosting Ensemble" @default.
- W3157185718 cites W1678356000 @default.
- W3157185718 cites W1967665138 @default.
- W3157185718 cites W1969302652 @default.
- W3157185718 cites W1970289169 @default.
- W3157185718 cites W1977533974 @default.
- W3157185718 cites W1978100847 @default.
- W3157185718 cites W1981362166 @default.
- W3157185718 cites W1984863600 @default.
- W3157185718 cites W1998811171 @default.
- W3157185718 cites W2005672855 @default.
- W3157185718 cites W2010542857 @default.
- W3157185718 cites W2019805893 @default.
- W3157185718 cites W2030748132 @default.
- W3157185718 cites W2033308452 @default.
- W3157185718 cites W2042651923 @default.
- W3157185718 cites W2052368800 @default.
- W3157185718 cites W2057624381 @default.
- W3157185718 cites W2062688288 @default.
- W3157185718 cites W2066504809 @default.
- W3157185718 cites W2079493731 @default.
- W3157185718 cites W2083970259 @default.
- W3157185718 cites W2086115842 @default.
- W3157185718 cites W2087814009 @default.
- W3157185718 cites W2099539981 @default.
- W3157185718 cites W2106562019 @default.
- W3157185718 cites W2107748757 @default.
- W3157185718 cites W2140157161 @default.
- W3157185718 cites W2316478175 @default.
- W3157185718 cites W2616765092 @default.
- W3157185718 cites W2616881109 @default.
- W3157185718 cites W2905009754 @default.
- W3157185718 cites W2979950223 @default.
- W3157185718 cites W3106860847 @default.
- W3157185718 cites W4239510810 @default.
- W3157185718 doi "https://doi.org/10.3390/en14092653" @default.
- W3157185718 hasPublicationYear "2021" @default.
- W3157185718 type Work @default.
- W3157185718 sameAs 3157185718 @default.
- W3157185718 citedByCount "6" @default.
- W3157185718 countsByYear W31571857182022 @default.
- W3157185718 countsByYear W31571857182023 @default.
- W3157185718 crossrefType "journal-article" @default.
- W3157185718 hasAuthorship W3157185718A5014545863 @default.
- W3157185718 hasAuthorship W3157185718A5069331404 @default.
- W3157185718 hasBestOaLocation W31571857181 @default.
- W3157185718 hasConcept C105795698 @default.
- W3157185718 hasConcept C121332964 @default.
- W3157185718 hasConcept C127413603 @default.
- W3157185718 hasConcept C139945424 @default.
- W3157185718 hasConcept C157915830 @default.
- W3157185718 hasConcept C33923547 @default.
- W3157185718 hasConcept C39432304 @default.
- W3157185718 hasConcept C41008148 @default.
- W3157185718 hasConcept C46262669 @default.
- W3157185718 hasConcept C57879066 @default.
- W3157185718 hasConcept C78762247 @default.
- W3157185718 hasConceptScore W3157185718C105795698 @default.
- W3157185718 hasConceptScore W3157185718C121332964 @default.
- W3157185718 hasConceptScore W3157185718C127413603 @default.
- W3157185718 hasConceptScore W3157185718C139945424 @default.
- W3157185718 hasConceptScore W3157185718C157915830 @default.
- W3157185718 hasConceptScore W3157185718C33923547 @default.
- W3157185718 hasConceptScore W3157185718C39432304 @default.
- W3157185718 hasConceptScore W3157185718C41008148 @default.
- W3157185718 hasConceptScore W3157185718C46262669 @default.
- W3157185718 hasConceptScore W3157185718C57879066 @default.
- W3157185718 hasConceptScore W3157185718C78762247 @default.
- W3157185718 hasIssue "9" @default.
- W3157185718 hasLocation W31571857181 @default.
- W3157185718 hasLocation W31571857182 @default.
- W3157185718 hasLocation W31571857183 @default.
- W3157185718 hasOpenAccess W3157185718 @default.
- W3157185718 hasPrimaryLocation W31571857181 @default.
- W3157185718 hasRelatedWork W1963912685 @default.
- W3157185718 hasRelatedWork W1967183477 @default.
- W3157185718 hasRelatedWork W1979886590 @default.
- W3157185718 hasRelatedWork W2000959334 @default.
- W3157185718 hasRelatedWork W2052627534 @default.
- W3157185718 hasRelatedWork W2470034308 @default.
- W3157185718 hasRelatedWork W2973700309 @default.
- W3157185718 hasRelatedWork W3210781332 @default.
- W3157185718 hasRelatedWork W4242982329 @default.
- W3157185718 hasRelatedWork W4379525223 @default.
- W3157185718 hasVolume "14" @default.
- W3157185718 isParatext "false" @default.
- W3157185718 isRetracted "false" @default.
- W3157185718 magId "3157185718" @default.
- W3157185718 workType "article" @default.