Matches in SemOpenAlex for { <https://semopenalex.org/work/W3157222134> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W3157222134 endingPage "012012" @default.
- W3157222134 startingPage "012012" @default.
- W3157222134 abstract "Improving the accuracy of dissolved oxygen (DO) prediction and establishing a water body DO prediction model are of great importance in water environment pollution management and planning management. In this paper, we propose a hybrid model (EEMD-Pearson-LSTM) of ensemble empirical modal decomposition-Pearson analysis and long-short memory neural network (LSTM), which firstly uses EEMD to decompose the non-stationary dissolved oxygen data into several sub-series that are easy to analyze, and secondly uses Pearson correlation analysis method to The screened subsequences are input to the LSTM network for training and prediction. By establishing the conventional LSTM model, EEMD-LSTM model, EEMD-BP model, and EEMD-Pearson-BP model for comparison under different time periods, root mean square error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), and coefficient of determination (R2) were used as evaluation indicators. In predicting the first 90 days of data, the RMSE, MAE, MAPE, and R2 of the EEMD-Pearson-LSTM model were 0.2355, 0.1893, 2.4710, and 0.8787, respectively, which were optimized by 37.88%, 35.44%, 37.42%, and 28.15%, respectively, compared with the traditional LSTM model, and the EEMD- LSTM model by 13.74%, 16.46%, 16.82%, and 4.98%, respectively, and the error of EEMD-BP network by 23.93%, 22.70%, and 24.32%, respectively, and its R2 by 11.17%, and the error of EEMD-Pearson-BP network by 18.62%, 14.07%, and 14.44%, and its R2 improved by 7.58%. To further demonstrate the advantages of EEMD-Pearson-LSTM, the prediction models for 30-day and 60-day time periods were selected for comparison, and the results showed that EEMD-Pearson-LSTM outperformed other models for the prediction of dissolved oxygen content in different time periods." @default.
- W3157222134 created "2021-05-10" @default.
- W3157222134 creator A5013472979 @default.
- W3157222134 creator A5022927606 @default.
- W3157222134 creator A5042630810 @default.
- W3157222134 creator A5076235070 @default.
- W3157222134 date "2021-04-01" @default.
- W3157222134 modified "2023-10-04" @default.
- W3157222134 title "Prediction of dissolved oxygen content in water based on EEMD-Pearson and LSTM hybrid models" @default.
- W3157222134 cites W1979344016 @default.
- W3157222134 cites W2007221293 @default.
- W3157222134 cites W2064675550 @default.
- W3157222134 cites W2418448134 @default.
- W3157222134 cites W2770044112 @default.
- W3157222134 doi "https://doi.org/10.1088/1755-1315/760/1/012012" @default.
- W3157222134 hasPublicationYear "2021" @default.
- W3157222134 type Work @default.
- W3157222134 sameAs 3157222134 @default.
- W3157222134 citedByCount "1" @default.
- W3157222134 countsByYear W31572221342022 @default.
- W3157222134 crossrefType "journal-article" @default.
- W3157222134 hasAuthorship W3157222134A5013472979 @default.
- W3157222134 hasAuthorship W3157222134A5022927606 @default.
- W3157222134 hasAuthorship W3157222134A5042630810 @default.
- W3157222134 hasAuthorship W3157222134A5076235070 @default.
- W3157222134 hasBestOaLocation W31572221341 @default.
- W3157222134 hasConcept C105795698 @default.
- W3157222134 hasConcept C119857082 @default.
- W3157222134 hasConcept C139945424 @default.
- W3157222134 hasConcept C150217764 @default.
- W3157222134 hasConcept C153180895 @default.
- W3157222134 hasConcept C154945302 @default.
- W3157222134 hasConcept C188154048 @default.
- W3157222134 hasConcept C2780092901 @default.
- W3157222134 hasConcept C28490314 @default.
- W3157222134 hasConcept C33923547 @default.
- W3157222134 hasConcept C41008148 @default.
- W3157222134 hasConcept C50644808 @default.
- W3157222134 hasConcept C55078378 @default.
- W3157222134 hasConceptScore W3157222134C105795698 @default.
- W3157222134 hasConceptScore W3157222134C119857082 @default.
- W3157222134 hasConceptScore W3157222134C139945424 @default.
- W3157222134 hasConceptScore W3157222134C150217764 @default.
- W3157222134 hasConceptScore W3157222134C153180895 @default.
- W3157222134 hasConceptScore W3157222134C154945302 @default.
- W3157222134 hasConceptScore W3157222134C188154048 @default.
- W3157222134 hasConceptScore W3157222134C2780092901 @default.
- W3157222134 hasConceptScore W3157222134C28490314 @default.
- W3157222134 hasConceptScore W3157222134C33923547 @default.
- W3157222134 hasConceptScore W3157222134C41008148 @default.
- W3157222134 hasConceptScore W3157222134C50644808 @default.
- W3157222134 hasConceptScore W3157222134C55078378 @default.
- W3157222134 hasIssue "1" @default.
- W3157222134 hasLocation W31572221341 @default.
- W3157222134 hasOpenAccess W3157222134 @default.
- W3157222134 hasPrimaryLocation W31572221341 @default.
- W3157222134 hasRelatedWork W2188032833 @default.
- W3157222134 hasRelatedWork W2625413331 @default.
- W3157222134 hasRelatedWork W2895956903 @default.
- W3157222134 hasRelatedWork W2977493550 @default.
- W3157222134 hasRelatedWork W3082873596 @default.
- W3157222134 hasRelatedWork W3121540092 @default.
- W3157222134 hasRelatedWork W3157222134 @default.
- W3157222134 hasRelatedWork W3162651605 @default.
- W3157222134 hasRelatedWork W4296785401 @default.
- W3157222134 hasRelatedWork W4386935664 @default.
- W3157222134 hasVolume "760" @default.
- W3157222134 isParatext "false" @default.
- W3157222134 isRetracted "false" @default.
- W3157222134 magId "3157222134" @default.
- W3157222134 workType "article" @default.