Matches in SemOpenAlex for { <https://semopenalex.org/work/W3157235110> ?p ?o ?g. }
- W3157235110 abstract "Acute Myeloid Leukaemia (AML) is a phenotypically and genetically heterogenous blood cancer characterised by very poor prognosis, with disease relapse being the primary cause of treatment failure. AML heterogeneity arise from different genetic and non-genetic sources, including its proposed hierarchical structure, with leukemic stem cells (LSCs) and progenitors giving origin to a variety of more mature leukemic subsets. Recent advances in single-cell molecular and phenotypic profiling have highlighted the intra and inter-patient heterogeneous nature of AML, which has so far limited the success of cell-based immunotherapy approaches against single targets. Machine Learning (ML) can be uniquely used to find non-trivial patterns from high-dimensional datasets and identify rare sub-populations. Here we review some recent ML tools that applied to single-cell data could help disentangle cell heterogeneity in AML by identifying distinct core molecular signatures of leukemic cell subsets. We discuss the advantages and limitations of unsupervised and supervised ML approaches to cluster and classify cell populations in AML, for the identification of biomarkers and the design of personalised therapies." @default.
- W3157235110 created "2021-05-10" @default.
- W3157235110 creator A5021550271 @default.
- W3157235110 creator A5069502963 @default.
- W3157235110 creator A5088236117 @default.
- W3157235110 creator A5091403632 @default.
- W3157235110 date "2021-04-29" @default.
- W3157235110 modified "2023-10-10" @default.
- W3157235110 title "Taming Cell-to-Cell Heterogeneity in Acute Myeloid Leukaemia With Machine Learning" @default.
- W3157235110 cites W1631320694 @default.
- W3157235110 cites W2050249118 @default.
- W3157235110 cites W2178888844 @default.
- W3157235110 cites W2424060136 @default.
- W3157235110 cites W2461476252 @default.
- W3157235110 cites W2560012305 @default.
- W3157235110 cites W2585315580 @default.
- W3157235110 cites W2598326928 @default.
- W3157235110 cites W2602848567 @default.
- W3157235110 cites W2614253029 @default.
- W3157235110 cites W2739492614 @default.
- W3157235110 cites W2761903029 @default.
- W3157235110 cites W2770925092 @default.
- W3157235110 cites W2794480084 @default.
- W3157235110 cites W2796170779 @default.
- W3157235110 cites W2800392236 @default.
- W3157235110 cites W2891678924 @default.
- W3157235110 cites W2901656544 @default.
- W3157235110 cites W2907514116 @default.
- W3157235110 cites W2916458303 @default.
- W3157235110 cites W2919632356 @default.
- W3157235110 cites W2947186274 @default.
- W3157235110 cites W2949177718 @default.
- W3157235110 cites W2951232102 @default.
- W3157235110 cites W2951737297 @default.
- W3157235110 cites W2958554910 @default.
- W3157235110 cites W2966569571 @default.
- W3157235110 cites W2968098426 @default.
- W3157235110 cites W2971398276 @default.
- W3157235110 cites W2971653850 @default.
- W3157235110 cites W2972734104 @default.
- W3157235110 cites W2973034691 @default.
- W3157235110 cites W2984629040 @default.
- W3157235110 cites W2985088562 @default.
- W3157235110 cites W2995171379 @default.
- W3157235110 cites W2995410603 @default.
- W3157235110 cites W2998127407 @default.
- W3157235110 cites W3022543485 @default.
- W3157235110 cites W3024132029 @default.
- W3157235110 cites W3024992482 @default.
- W3157235110 cites W3036137852 @default.
- W3157235110 cites W3080668573 @default.
- W3157235110 cites W3087350907 @default.
- W3157235110 cites W3089241551 @default.
- W3157235110 cites W3094802395 @default.
- W3157235110 cites W3111222208 @default.
- W3157235110 cites W3111879617 @default.
- W3157235110 cites W3133716805 @default.
- W3157235110 cites W4213108508 @default.
- W3157235110 cites W71389262 @default.
- W3157235110 doi "https://doi.org/10.3389/fonc.2021.666829" @default.
- W3157235110 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8117935" @default.
- W3157235110 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33996595" @default.
- W3157235110 hasPublicationYear "2021" @default.
- W3157235110 type Work @default.
- W3157235110 sameAs 3157235110 @default.
- W3157235110 citedByCount "2" @default.
- W3157235110 countsByYear W31572351102022 @default.
- W3157235110 crossrefType "journal-article" @default.
- W3157235110 hasAuthorship W3157235110A5021550271 @default.
- W3157235110 hasAuthorship W3157235110A5069502963 @default.
- W3157235110 hasAuthorship W3157235110A5088236117 @default.
- W3157235110 hasAuthorship W3157235110A5091403632 @default.
- W3157235110 hasBestOaLocation W31572351101 @default.
- W3157235110 hasConcept C104317684 @default.
- W3157235110 hasConcept C121608353 @default.
- W3157235110 hasConcept C127716648 @default.
- W3157235110 hasConcept C1491633281 @default.
- W3157235110 hasConcept C163763905 @default.
- W3157235110 hasConcept C201750760 @default.
- W3157235110 hasConcept C2777306565 @default.
- W3157235110 hasConcept C2777701055 @default.
- W3157235110 hasConcept C2779282312 @default.
- W3157235110 hasConcept C28328180 @default.
- W3157235110 hasConcept C2993296363 @default.
- W3157235110 hasConcept C502942594 @default.
- W3157235110 hasConcept C54355233 @default.
- W3157235110 hasConcept C60644358 @default.
- W3157235110 hasConcept C64618202 @default.
- W3157235110 hasConcept C70721500 @default.
- W3157235110 hasConcept C71924100 @default.
- W3157235110 hasConcept C86803240 @default.
- W3157235110 hasConceptScore W3157235110C104317684 @default.
- W3157235110 hasConceptScore W3157235110C121608353 @default.
- W3157235110 hasConceptScore W3157235110C127716648 @default.
- W3157235110 hasConceptScore W3157235110C1491633281 @default.
- W3157235110 hasConceptScore W3157235110C163763905 @default.
- W3157235110 hasConceptScore W3157235110C201750760 @default.
- W3157235110 hasConceptScore W3157235110C2777306565 @default.
- W3157235110 hasConceptScore W3157235110C2777701055 @default.
- W3157235110 hasConceptScore W3157235110C2779282312 @default.