Matches in SemOpenAlex for { <https://semopenalex.org/work/W3157236265> ?p ?o ?g. }
- W3157236265 endingPage "1984" @default.
- W3157236265 startingPage "1971" @default.
- W3157236265 abstract "This article develops an evolving type-2 quantum fuzzy neural network (eT2QFNN) control scheme for achieving trajectory tracking with unmanned aerial vehicles (UAVs). The proposed approach involves quantum membership functions, automatic rule growing process, and parameter adjustment learning scenario to deal with the problems of inadequacy, uncertainties, and noise in conventional control techniques. Furthermore, the proposed approach is operated in a parallel structure with the proportional derivative (PD) controller to compensate the transients in performance and learn the dynamic characteristics of the system. Besides, a sliding theory-based adaptive law is equipped with the control approach to compensate for the nonlinearity of the UAV. To assess the performance, numerical simulations and real-time experiments are carried for pitch and yaw axes control of two degrees of freedom (2DoF) helicopter test rig with the proposed approach. The simulations and experiments are aimed at achieving an offline path tracking with an objective to minimize the deviation error and improve the time response characteristics of the UAVs. The results depict the robustness of the proposed approach in terms of integral time absolute error for a helicopter following various trajectories. <italic xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>Note to Practitioners</i> —This article addresses the problem of trajectory tracking and attitude control in a two-rotor UAV system. In practical application, there are multiple end users for an efficiently controlled UAV system. Generally, the trajectory tracking and attitude control are associated with the capability of UAVs to perform vertical take-off, landing, maneuver, and cyclic rotation as per the change in path. Furthermore, the control of UAVs for trajectory tracking and attitude provides a unified framework in efficiently following the desired path and maintaining the desired attitude. This has potential applications in the field of search and rescue operations, surveillance, military applications, environmental exploration, and aerial cinematography. Although trajectory tracking and attitude control problems have been studied a lot, the drawbacks due to uncertainties, immediate response to trajectory changes, and attitude settling are still open and challenging. This article proposed an eT2QFNN for a two rotor of UAV system with PD controller using automatic rule growing process. Sufficient trajectories are developed to make the UAV follow them under the proposed approach. Both simulation and real-time experiments were conducted and the results of the developed controller are compared with conventional approaches." @default.
- W3157236265 created "2021-05-10" @default.
- W3157236265 creator A5031425996 @default.
- W3157236265 creator A5055996071 @default.
- W3157236265 date "2022-07-01" @default.
- W3157236265 modified "2023-09-27" @default.
- W3157236265 title "Evolving Intelligent System for Trajectory Tracking of Unmanned Aerial Vehicles" @default.
- W3157236265 cites W1500845986 @default.
- W3157236265 cites W1510228701 @default.
- W3157236265 cites W1910484443 @default.
- W3157236265 cites W1977638158 @default.
- W3157236265 cites W1981649566 @default.
- W3157236265 cites W1986045690 @default.
- W3157236265 cites W2005057587 @default.
- W3157236265 cites W2020634506 @default.
- W3157236265 cites W2026447021 @default.
- W3157236265 cites W2027492620 @default.
- W3157236265 cites W2031299410 @default.
- W3157236265 cites W2047073226 @default.
- W3157236265 cites W2079120688 @default.
- W3157236265 cites W2103936935 @default.
- W3157236265 cites W2108440202 @default.
- W3157236265 cites W2116046819 @default.
- W3157236265 cites W2125631815 @default.
- W3157236265 cites W2151636762 @default.
- W3157236265 cites W2160041907 @default.
- W3157236265 cites W2342962802 @default.
- W3157236265 cites W2343090116 @default.
- W3157236265 cites W2380626858 @default.
- W3157236265 cites W2412011606 @default.
- W3157236265 cites W2539313150 @default.
- W3157236265 cites W2591999327 @default.
- W3157236265 cites W2613419728 @default.
- W3157236265 cites W2778083011 @default.
- W3157236265 cites W2788721739 @default.
- W3157236265 cites W2792294435 @default.
- W3157236265 cites W2802990478 @default.
- W3157236265 cites W2884975621 @default.
- W3157236265 cites W2886006925 @default.
- W3157236265 cites W2905286581 @default.
- W3157236265 cites W2909853325 @default.
- W3157236265 cites W2953437276 @default.
- W3157236265 cites W2955399703 @default.
- W3157236265 cites W2956028541 @default.
- W3157236265 cites W2974425144 @default.
- W3157236265 cites W2979223698 @default.
- W3157236265 cites W3012458673 @default.
- W3157236265 cites W3017827511 @default.
- W3157236265 cites W3020096382 @default.
- W3157236265 cites W3022082100 @default.
- W3157236265 cites W3083588900 @default.
- W3157236265 cites W3083995535 @default.
- W3157236265 cites W3093966514 @default.
- W3157236265 cites W3110781789 @default.
- W3157236265 cites W3150815575 @default.
- W3157236265 doi "https://doi.org/10.1109/tase.2021.3072339" @default.
- W3157236265 hasPublicationYear "2022" @default.
- W3157236265 type Work @default.
- W3157236265 sameAs 3157236265 @default.
- W3157236265 citedByCount "0" @default.
- W3157236265 crossrefType "journal-article" @default.
- W3157236265 hasAuthorship W3157236265A5031425996 @default.
- W3157236265 hasAuthorship W3157236265A5055996071 @default.
- W3157236265 hasConcept C104317684 @default.
- W3157236265 hasConcept C121332964 @default.
- W3157236265 hasConcept C127413603 @default.
- W3157236265 hasConcept C1276947 @default.
- W3157236265 hasConcept C133731056 @default.
- W3157236265 hasConcept C13662910 @default.
- W3157236265 hasConcept C154945302 @default.
- W3157236265 hasConcept C171146098 @default.
- W3157236265 hasConcept C183356978 @default.
- W3157236265 hasConcept C185592680 @default.
- W3157236265 hasConcept C203479927 @default.
- W3157236265 hasConcept C2775924081 @default.
- W3157236265 hasConcept C41008148 @default.
- W3157236265 hasConcept C47446073 @default.
- W3157236265 hasConcept C50644808 @default.
- W3157236265 hasConcept C55493867 @default.
- W3157236265 hasConcept C63479239 @default.
- W3157236265 hasConcept C6557445 @default.
- W3157236265 hasConcept C79487989 @default.
- W3157236265 hasConcept C86803240 @default.
- W3157236265 hasConceptScore W3157236265C104317684 @default.
- W3157236265 hasConceptScore W3157236265C121332964 @default.
- W3157236265 hasConceptScore W3157236265C127413603 @default.
- W3157236265 hasConceptScore W3157236265C1276947 @default.
- W3157236265 hasConceptScore W3157236265C133731056 @default.
- W3157236265 hasConceptScore W3157236265C13662910 @default.
- W3157236265 hasConceptScore W3157236265C154945302 @default.
- W3157236265 hasConceptScore W3157236265C171146098 @default.
- W3157236265 hasConceptScore W3157236265C183356978 @default.
- W3157236265 hasConceptScore W3157236265C185592680 @default.
- W3157236265 hasConceptScore W3157236265C203479927 @default.
- W3157236265 hasConceptScore W3157236265C2775924081 @default.
- W3157236265 hasConceptScore W3157236265C41008148 @default.
- W3157236265 hasConceptScore W3157236265C47446073 @default.
- W3157236265 hasConceptScore W3157236265C50644808 @default.